Averaging Functions on Triangular Fuzzy Numbers and an Application in Graphs

被引:0
作者
Zumelzu, Nicolas [1 ]
Diaz, Roberto [2 ]
Aparcana, Aldryn [3 ]
Canuman, Jose [4 ]
Mella, Alvaro [1 ]
Mansilla, Edmundo [1 ]
Soto, Diego [5 ]
Bedregal, Benjamin [5 ]
机构
[1] Univ Magallanes, Fac Ciencias, Dept Matemat & Fis, Punta Arenas 6200000, Chile
[2] Univ Lagos, Dept Ciencias Exactas, Osorno 5290000, Chile
[3] Univ San Luis Gonzaga Ica, Fac Ciencias, Dept Matemat, Ica 11000, Peru
[4] Univ Magallanes, Fac Ingn, Dept Ingn Comp, Punta Arenas 6200000, Chile
[5] Univ Fed Rio Grande do Norte, Dept Informat Matemat Aplicada DIMAp, BR-59078970 Natal, Brazil
关键词
Vectors; Fuzzy systems; Fuzzy sets; Arithmetic; Mathematical models; Open wireless architecture; Fuzzy logic; Urban areas; Temperature dependence; Taxonomy; Admissible orders; average function; hyperstructure; NI-vector space (NIVS); ONI-vector space; ONI-vector weighted graph; ordered hyperstructure; ordered twofold commutative monoid; orders on fuzzy numbers; triangular fuzzy numbers (TFNs); twofold commutative monoid; VECTOR-SPACES; AGGREGATION; FUSION;
D O I
10.1109/TFUZZ.2024.3473791
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Admissible orders on fuzzy numbers are total orders, which refine a basic and well-known partial order on fuzzy numbers. In this work, we define an admissible order on triangular fuzzy numbers (i.e., TFN 's) and study some fundamental properties with its arithmetic and their relation with this admissible order. We also propose a new hyperstructure for ordered vector spaces and, in particular, consider the case of TFN . In addition, we also introduce the concepts of averaging functions on TFN , with emphasis on ordered weighted averaging functions on TFN equipped with an admissible order. Finally, the problem of joining central vertices is presented with an illustrative example where the previous concept is used.
引用
收藏
页码:7025 / 7036
页数:12
相关论文
共 67 条
  • [1] Zadeh L.A., Fuzzy sets, Inf. Control, 8, 3, pp. 338-353, (1965)
  • [2] Dubois D., Prade H., Operations on fuzzy numbers, Int. J. Syst. Sci., 9, 6, pp. 613-626, (1978)
  • [3] Hanss M., Applied Fuzzy Arithmetic: An Introduction With Engineering Applications, (2005)
  • [4] Klir G., Yuan B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, 4, (1995)
  • [5] da Cruz Asmus T., Dimuro G.P., Bedregal B.R.C., On two-player interval-valued fuzzy Bayesian games, Int. J. Intell. Syst., 32, 6, pp. 557-596, (2017)
  • [6] Prokopowicz P., Czerniak J.M., Mikolajewski D., Apiecionek L., Slezak D., Theory and applications of ordered fuzzy numbers - A tribute to professor Witold Kosiński, Studies in Fuzziness and Soft Computing, 356, (2017)
  • [7] Roldan-Lopez-de-Hierro A., Roldan C., Herrera F., On a new methodology for ranking fuzzy numbers and its application to real economic data, Fuzzy Sets Syst, 353, pp. 86-110, (2018)
  • [8] Wang W., Wang Z., Total orderings defined on the set of all fuzzy numbers, Fuzzy Sets Syst, 243, pp. 131-141, (2014)
  • [9] Zumelzu N., Bedregal B., Mansilla E., Bustince H., Diaz R., Admissible orders on fuzzy numbers, IEEE Trans. Fuzzy Syst., 30, 11, pp. 4788-4799
  • [10] Bustince H., Fernandez J., Kolesarova A., Mesiar R., Generation of linear orders for intervals by means of aggregation functions, Fuzzy Sets Syst, 220, pp. 69-77, (2013)