Optically Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging

被引:2
作者
Raad, Jaime Parra [1 ]
Lock, Daniel [1 ]
Liu, Yi-Yi [1 ]
Solomon, Mark [1 ]
Peralta, Laura [2 ]
Christensen-Jeffries, Kirsten [1 ]
机构
[1] Kings Coll London, Dept Biomed Engn & Imaging Sci, London WC2R 2LS, England
[2] Kings Coll London, Dept Surg & Intervent Engn, London WC2R 2LS, England
基金
英国医学研究理事会;
关键词
Phantoms; Optical imaging; Optical device fabrication; Optical variables control; Optical variables measurement; Imaging; Ultrasonic imaging; Three-dimensional displays; Optical diffraction; Optical recording; Contrast enhanced ultrasound (US) imaging; microfluid chip; microvascular phantom; super-resolution US (SRUS) imaging; tissue-mimicking material; US localization microscopy; US phantom; vascular phantom; TISSUE-MIMICKING PHANTOM; MODEL;
D O I
10.1109/TUFFC.2024.3484770
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Super-resolution ultrasound (SRUS) visu-Microvascular Phantom alises microvasculature beyond the ultrasound diffraction limit (wavelength (lambda)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 mu m are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to similar to 60 mu m(lambda/5.8; lambda=similar to 350 mu m ). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 mu m(lambda/22) with a standard deviation error of 11.44 mu m. The average error decreased to 7.93 mu m(lambda/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.
引用
收藏
页码:1833 / 1843
页数:11
相关论文
共 36 条
[1]   Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography [J].
Andersen, Sofie Bech ;
Taghavi, Iman ;
Kjer, Hans Martin ;
Sogaard, Stinne Byrholdt ;
Gundlach, Carsten ;
Dahl, Vedrana Andersen ;
Nielsen, Michael Bachmann ;
Dahl, Anders Bjorholm ;
Jensen, Jorgen Arendt ;
Sorensen, Charlotte Mehlin .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]  
[Anonymous], 2023, Accuracy (trueness and precision) of measurement methods and results-Part 1: general principles and definitions ISO 5725-1:2023(en) International Organization for Standardization
[3]   Learned Super Resolution Ultrasound for Improved Breast Lesion Characterization [J].
Bar-Shira, Or ;
Grubstein, Ahuva ;
Rapson, Yael ;
Suhami, Dror ;
Atar, Eli ;
Peri-Hanania, Keren ;
Rosen, Ronnie ;
Eldar, Yonina C. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VII, 2021, 12907 :109-118
[4]   Get a Grip: Variation in Human Hand Grip Strength and Implications for Human Evolution [J].
Bardo, Ameline ;
Kivell, Tracy L. ;
Town, Katie ;
Donati, Georgina ;
Ballieux, Haiko ;
Stamate, Cosmin ;
Edginton, Trudi ;
Forrester, Gillian S. .
SYMMETRY-BASEL, 2021, 13 (07)
[5]   ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods [J].
Boni, Enrico ;
Bassi, Luca ;
Dallai, Alessandro ;
Guidi, Francesco ;
Meacci, Valentino ;
Ramalli, Alessandro ;
Ricci, Stefano ;
Tortoli, Piero .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2016, 63 (10) :1488-1495
[6]   Assessment of Transarterial Chemoembolization Using Super-resolution Ultrasound Imaging and a Rat Model of Hepatocellular Carcinoma [J].
Brown, Katherine G. ;
Li, Junjie ;
Margolis, Ryan ;
Trinh, Brian ;
Eisenbrey, John R. ;
Hoyt, Kenneth .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2023, 49 (05) :1318-1326
[7]   ACOUSTIC CHARACTERIZATION OF TISSUE-MIMICKING MATERIALS FOR ULTRASOUND PERFUSION IMAGING RESEARCH [J].
Chen, Peiran ;
Pollet, Andreas M. A. O. ;
Panfilova, Anastasiia ;
Zhou, Meiyi ;
Turco, Simona ;
den Toonder, Jaap M. J. ;
Mischi, Massimo .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2022, 48 (01) :124-142
[8]   Validation of Ultrasound Super-Resolution Imaging of Vasa Vasorum in Rabbit Atherosclerotic Plaques [J].
Chen, Qiyang ;
Yu, Jaesok ;
Lukashova, Lyudmila ;
Latoche, Joseph D. ;
Zhu, Jianhui ;
Lavery, Linda ;
Verdelis, Konstantinos ;
Anderson, Carolyn J. ;
Kim, Kang .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (08) :1725-1729
[9]   In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy [J].
Chen, Sung-Liang ;
Xie, Zhixing ;
Carson, Paul L. ;
Wang, Xueding ;
Guo, L. Jay .
OPTICS LETTERS, 2011, 36 (20) :4017-4019
[10]   SUPER-RESOLUTION ULTRASOUND IMAGING [J].
Christensen-Jeffries, Kirsten ;
Couture, Olivier ;
Dayton, Paul A. ;
Eldar, Yonina C. ;
Hynynen, Kullervo ;
Kiessling, Fabian ;
O'Reilly, Meaghan ;
Pinton, I. Gianmarco F. ;
Schmitz, Georg ;
Tang, Meng-Xing ;
Tanter, Mickael ;
Van Sloun, Ruud J. G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04) :865-891