Rare-Earth Iron Garnet Superlattices with Sub-unit Cell Composition Modulation

被引:0
作者
Khurana, Bharat [1 ]
Kaczmarek, Allison C. [1 ]
Chou, Chung-Tao [2 ,3 ]
Su, Tingyu [4 ]
Lasinger, Katharina [1 ,5 ]
Grossmark, Tomas [1 ]
Bono, David C. [1 ]
Liu, Luqiao [3 ]
Ross, Caroline A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] Swiss Fed Inst Technol, Dept Mat, CH-8093 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
iron garnet; superlattice; multilayer; ferrimagnet; magnetic anisotropy; pulsed laserdeposition; MAGNETIC-PROPERTIES; ELECTRON-GAS; THIN-FILMS; YTTRIUM; LASER; MULTILAYERS; DRIVEN; ND;
D O I
10.1021/acsnano.4c11117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxide superlattices reveal a rich array of emergent properties derived from the composition modulation and the resulting lattice distortion, charge transfer, and symmetry reduction that occur at the interfaces between the layers. The great majority of studies have focused on perovskite oxide superlattices, revealing, for example, the appearance of an interfacial 2D electron gas, magnetic moment, or improper ferroelectric polarization that is not present in the parent phases. Garnets possess greater structural complexity than perovskites: the cubic garnet unit cell contains 160 atoms with the cations distributed between three different coordination sites, and garnets exhibit a wide range of useful properties, including ferrimagnetism and ion transport. However, there have been few reports of the synthesis or properties of garnet superlattices, with layer thicknesses approaching the unit cell dimension of 1.2 nm. Here, we describe superlattices made from Bi and rare earth (RE = Tm, Tb, Eu, Lu) iron garnets (IGs) grown by pulsed laser deposition. Atom probe tomography and transmission electron microscopy reveal the composition modulation without dislocations and layer thicknesses as low as 0.45 nm, less than half a unit cell. TmIG/TbIG superlattices exhibit perpendicular magnetic anisotropy that is qualitatively different from the in-plane anisotropy of the solid solution, and BiIG/LuIG superlattices exhibit ferromagnetic resonance linewidth characteristics of the end-members rather than the solid solution. Garnet superlattices provide a playground for exploring interface physics within the vast parameter space of cation coordination and substitution.
引用
收藏
页码:35269 / 35275
页数:7
相关论文
共 57 条
  • [1] Ohtomo A., Hwang H.Y., A High-Mobility Electron Gas at the LaAlO3/SrTiO3 Heterointerface, Nature, 427, pp. 423-426, (2004)
  • [2] Bousquet E., Dawber M., Stucki N., Lichtensteiger C., Hermet P., Gariglio S., Triscone J.-M., Ghosez P., Improper Ferroelectricity in Perovskite Oxide Artificial Superlattices, Nature, 452, pp. 732-736, (2008)
  • [3] Murata T., Kozuka Y., Uchida M., Kawasaki M., Magnetic Properties of Spin Frustrated Spinel ZnFe2O4/ZnCr2O4 Superlattices, J. Appl. Phys., 118, (2015)
  • [4] Kawasaki J.K., Baek D., Paik H., Nair H.P., Kourkoutis L.F., Schlom D.G., Shen K.M., Rutile IrO2/TiO2 Superlattices: A Hyperconnected Analog to the Ruddelsden-Popper Structure, Phys. Rev. Mater., 2, (2018)
  • [5] Adam J.D., Collins J.H., Microwave Magnetostatic Delay Devices Based on Epitaxial Yttrium Iron Garnet, Proc. IEEE, 64, pp. 794-800, (1976)
  • [6] Bi L., Hu J., Dionne G.F., Kimerling L., Ross C.A., Monolithic Integration of Chalcogenide Glass/Iron Garnet Waveguides and Resonators for on-Chip Nonreciprocal Photonic Devices, Integrated Optics: Devices, Materials, and Technologies XV, 7941, pp. 28-37, (2011)
  • [7] Yan W., Yang Y., Yang W., Qin J., Deng L., Bi L., On-Chip Nonreciprocal Photonic Devices Based on Hybrid Integration of Magneto-Optical Garnet Thin Films on Silicon, IEEE J. Sel. Top. Quantum Electron., 28, (2022)
  • [8] Lu J., Ueda K., Yagi H., Yanagitani T., Akiyama Y., Kaminskii A.A., Neodymium Doped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystalline Ceramics─a New Generation of Solid State Laser and Optical Materials, J. Alloys Compd., 341, pp. 220-225, (2002)
  • [9] Lu J., Prabhu M., Xu J., Ueda K., Yagi H., Yanagitani T., Kaminskii A.A., Highly Efficient 2% Nd:Yttrium Aluminum Garnet Ceramic Laser, Appl. Phys. Lett., 77, pp. 3707-3709, (2000)
  • [10] Cussen E.J., Structure and Ionic Conductivity in Lithium Garnets, J. Mater. Chem., 20, pp. 5167-5173, (2010)