Visual Analytics Meets Process Mining: Challenges and Opportunities

被引:0
作者
Miksch, Silvia [1 ]
Di Ciccio, Claudio [2 ]
Soffer, Pnina [3 ]
Weber, Barbara [4 ]
Rhyne, Theresa-Marie
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Univ Utrecht, NL-3584 CC Utrecht, Netherlands
[3] Univ Haifa, IL-31905 Haifa, Israel
[4] Univ St Gallen, CH-9000 St Gallen, Switzerland
关键词
Process mining; Computers; Data analysis; Visual analytics; Knowledge discovery; Human in the loop; Cognition; Monitoring;
D O I
10.1109/MCG.2024.3456916
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual analytics (VA) integrates the outstanding capabilities of humans in terms of visual information exploration with the enormous processing power of computers to form a powerful knowledge discovery environment. In other words, VA is the science of analytical reasoning facilitated by interactive interfaces, capturing the information discovery process while keeping humans in the loop. Process mining (PM) is a data-driven and process centric approach that aims to extract information and knowledge from event logs to discover, monitor, and improve processes in various application domains. The combination of interactive visual data analysis and exploration with PM algorithms can make complex information structures more comprehensible and facilitate new insights. Yet, this combination remains largely unexplored. In this article, we illustrate the concepts of VA and PM, how their combination can support the extraction of more insights from complex event data, and elaborate on the challenges and opportunities for analyzing process data with VA methods and enhancing VA methods using PM techniques.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [41] A Correlative Analysis Process in a Visual Analytics Environment
    Malik, Abish
    Maciejewski, Ross
    Jang, Yun
    Huang, Whitney
    Elmqvist, Niklas
    Ebert, David S.
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 33 - 42
  • [42] Exploring the Fusion Potentials of Data Visualization and Data Analytics in the Process of Mining Digitalization
    Liang, Ruiyu
    Huang, Chaoran
    Zhang, Chengguo
    Li, Binghao
    Saydam, Serkan
    Canbulat, Ismet
    IEEE ACCESS, 2023, 11 : 40608 - 40628
  • [43] Big Data Visualisation and Visual Analytics for Music Data Mining
    Barkwell, Katrina E.
    Cuzzocrea, Alfredo
    Leung, Carson K.
    Ocran, Ashley A.
    Sanderson, Jennifer M.
    Stewart, James Ayrton
    Wodi, Bryan H.
    2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 235 - 240
  • [44] Analysis of Mining, Visual Analytics Tools and Techniques in Space and Time
    Nandhini, K.
    Shanthi, I. Elizabeth
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 2, 2016, 380 : 547 - 556
  • [45] Backpack Process Model (BPPM): A Process Mining Approach for Curricular Analytics
    Salazar-Fernandez, Juan Pablo
    Munoz-Gama, Jorge
    Maldonado-Mahauad, Jorge
    Bustamante, Diego
    Sepulveda, Marcos
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [46] Text mining and visual analytics in research: Exploring the innovative tools
    Rabbani, Mustafa Raz A.
    Bashar, Abu
    Atif, Mohd
    Jreisat, Ammar
    Zulfikar, Zehra
    Naseem, Yusra
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [47] Process Analytics Through Event Databases: Potentials for Visualizations and Process Mining
    Delias, Pavlos
    Kazanidis, Ioannis
    DECISION SUPPORT SYSTEMS VII: DATA, INFORMATION AND KNOWLEDGE VISUALIZATION IN DECISION SUPPORT SYSTEMS, 2017, 282 : 88 - 100
  • [48] Demystifying Visual Analytics
    Chabot, Christian
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2009, 29 (02) : 84 - 87
  • [49] A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges
    孙国道
    巫英才
    梁荣华
    刘世霞
    JournalofComputerScience&Technology, 2013, 28 (05) : 852 - 867
  • [50] A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges
    Guo-Dao Sun
    Ying-Cai Wu
    Rong-Hua Liang
    Shi-Xia Liu
    Journal of Computer Science and Technology, 2013, 28 : 852 - 867