Low-light image enhancement based on variational image decomposition

被引:0
|
作者
Su, Yonggang [1 ,2 ]
Yang, Xuejie [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
关键词
Low-light image enhancement; Variational image decomposition; TV-G-L-2; model; Histogram equalization; HISTOGRAM EQUALIZATION; FRINGE PATTERN; NOISE REMOVAL; RETINEX; ILLUMINATION; NETWORK;
D O I
10.1007/s00530-024-01581-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the significant differences in brightness regions in real-world images, existing low-light image enhancement methods may lead to insufficient enhancement in low-light regions or over-enhancement in normal-light regions, as well as color distortions and artifacts. To overcome this drawback, we propose a real-world low-light image enhancement method based on a variational image decomposition model. In our proposed method, we first grayscale and histogram equalize the low-light image. Then, we use the variational image decomposition model to decompose the histogram-equalized grayscale image into cartoon, texture, and high-frequency detail components. Next, we use a Gaussian low-pass filter (GLPF) to remove the noise in the cartoon component, and use a nonlinear stretch function and a gamma function to enhance and compress the texture component and the high-frequency detail component, respectively. We then merge the processed components to obtain a reconstructed grayscale image. Finally, we convert the low-light image from the RGB color space to the HSV color space and recombine the reconstructed grayscale image with the H and S components to obtain the enhanced image after color space conversion. To validate the effectiveness of our proposed method, we carried out both qualitative and quantitative experiments on 5 datasets, and compared it with 14 other low-light image enhancement methods. The results show that our proposed method outperforms most of the low-light image enhancement methods in both qualitative and quantitative performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [42] DCTE-LLIE: A Dual Color-and-Texture-Enhancement-Based Method for Low-Light Image Enhancement
    Wang, Hua
    Cao, Jianzhong
    Yang, Lei
    Huang, Jijiang
    COMPUTERS, 2024, 13 (06)
  • [43] Low-Light Image Enhancement With Regularized Illumination Optimization and Deep Noise Suppression
    Guo, Yu
    Lu, Yuxu
    Liu, Ryan Wen
    Yang, Meifang
    Chui, Kwok Tai
    IEEE ACCESS, 2020, 8 (145297-145315): : 145297 - 145315
  • [44] Continuous detail enhancement framework for low-light image enhancement☆
    Liu, Kang
    Xv, Zhihao
    Yang, Zhe
    Liu, Lian
    Li, Xinyu
    Hu, Xiaopeng
    DISPLAYS, 2025, 88
  • [45] Low-Light Image Enhancement with Wavelet-based Diffusion Models
    Jiang, Hai
    Luo, Ao
    Fan, Haoqiang
    Han, Songchen
    Liu, Shuaicheng
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [46] Low-Light Image Enhancement Algorithm Based on HSI Color Space
    Wu, Fan
    KinTak, U.
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [47] Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map
    Pan, Xinxin
    Li, Changli
    Pan, Zhigeng
    Yan, Jingwen
    Tang, Shiqiang
    Yin, Xinghui
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [48] Low-light Image Enhancement with Deep Blind Denoising
    Guo, Yu
    Lu, Yuxu
    Yang, Meifang
    Liu, Ryan Wen
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 406 - 411
  • [49] Low-Light Image Enhancement: A Comparative Review and Prospects
    Kim, Wonjun
    IEEE ACCESS, 2022, 10 (84535-84557): : 84535 - 84557
  • [50] Deep Lightening Network for Low-light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel Pak-Kong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,