Coded Distributed Computing for Vehicular Edge Computing With Dual-Function Radar Communication

被引:2
|
作者
Nguyen, Tien Hoa [1 ]
Thi, Hoai Linh Nguyen [1 ]
Le Hoang, Hung [1 ]
Tan, Junjie [2 ]
Luong, Nguyen Cong [3 ]
Xiao, Sa [4 ,5 ]
Niyato, Dusit [6 ]
Kim, Dong In [7 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Elect Engn, Hanoi 100000, Vietnam
[2] Vivo Mobile Commun Co Ltd, Vivo Commun Res Inst vCRI, Shenzhen 518049, Peoples R China
[3] Phenikaa Univ, Fac Comp Sci, Hanoi 12116, Vietnam
[4] Univ Elect Sci & Technol China, Natl Key Lab Wireless Commun, Chengdu 611731, Peoples R China
[5] Kashi Inst Elect & Informat Ind, Kashi 653101, Peoples R China
[6] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore 639798, Singapore
[7] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
Task analysis; Radar; Radar detection; Servers; Resource management; Costs; Sensors; Dual-function radar communication; vehicular edge computing; maximum distance separable; deep reinforcement learning; transfer learning; RESOURCE-MANAGEMENT; REINFORCEMENT; CHALLENGES; NETWORKING; DESIGN;
D O I
10.1109/TVT.2024.3409554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a coded distributed computing (CDC)-based vehicular edge computing (VEC) framework. Therein, a task vehicle equipped with a dual-function radar communication (DFRC) module uses its communication function to offload its computing tasks to nearby service vehicles and its radar function to detect targets. However, due to the high mobility of the vehicles, the relative distance between the task vehicle and each service vehicle frequently varies over time, which causes a straggler effect and results in high offloading latency and even offloading disruption. To address this issue, the CDC based on the (m, k)-maximum distance separable (MDS) code is used at the communication function of the task vehicle. We then formulate an optimization problem that aims to i) minimize the overall computing latency, ii) minimize the offloading cost, and iii) maximize the radar range subject to the offloading latency requirement and connection duration. To achieve these objectives, we optimize the fractions of power allocated to the radar and communication functions and the MDS parameters. However, the highly dynamic vehicular environment makes the problem intractable, particularly due to the uncertainty of computing resource, and stochastic networking resources. Thus, we propose to use deep reinforcement learning (DRL) algorithms with regularization to address this issue. To enhance the generalizability of the proposed DRL algorithms, we further develop a transfer learning algorithm that allows the task vehicle to quickly learn the optimal policy in new environments. Simulation results show the effectiveness of the proposed scheme in terms of radar range, computation latency, and offloading cost. Furthermore, the employment of transfer learning is demonstrated to greatly boost the convergence speeds.
引用
收藏
页码:15318 / 15331
页数:14
相关论文
共 50 条
  • [21] MIMO OFDM Dual-Function Radar-Communication Under Error Rate and Beampattern Constraints
    Johnston, Jeremy
    Venturino, Luca
    Grossi, Emanuele
    Lops, Marco
    Wang, Xiaodong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (06) : 1951 - 1964
  • [22] Adaptive Digital Twin Migration in Vehicular Edge Computing and Networks
    Mou, Fangyi
    Lou, Jiong
    Tang, Zhiqing
    Wu, Yuan
    Jia, Weijia
    Zhang, Yan
    Zhao, Wei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4839 - 4854
  • [23] On the Design of Federated Learning in Latency and Energy Constrained Computation Offloading Operations in Vehicular Edge Computing Systems
    Shinde, Swapnil
    Bozorgchenani, Arash
    Tarchi, Daniele
    Ni, Qiang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2041 - 2057
  • [24] An Efficient Distributed Task Offloading Scheme for Vehicular Edge Computing Networks
    Bute, Muhammad Saleh
    Fan, Pingzhi
    Zhang, Li
    Abbas, Fakhar
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (12) : 13149 - 13161
  • [25] Efficient Task Allocation for Computation Offloading in Vehicular Edge Computing
    Zhang, Zheng
    Zeng, Feng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 5595 - 5606
  • [26] A Deep Reinforcement Learning-Based Resource Management Game in Vehicular Edge Computing
    Zhu, Xiaoyu
    Luo, Yueyi
    Liu, Anfeng
    Xiong, Neal N.
    Dong, Mianxiong
    Zhang, Shaobo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 2422 - 2433
  • [27] Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution
    Gao, Jian
    Kuang, Zhufang
    Gao, Jie
    Zhao, Lian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 3999 - 4009
  • [28] On Batch-Processing Based Coded Computing for Heterogeneous Distributed Computing Systems
    Wang, Baoqian
    Xie, Junfei
    Lu, Kejie
    Wan, Yan
    Fu, Shengli
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2438 - 2454
  • [29] Task Offloading and Serving Handover of Vehicular Edge Computing Networks Based on Trajectory Prediction
    Lv, Baiquan
    Yang, Chao
    Chen, Xin
    Yao, Zhihua
    Yang, Junjie
    IEEE ACCESS, 2021, 9 : 130793 - 130804
  • [30] Revenue and Energy Efficiency-Driven Delay-Constrained Computing Task Offloading and Resource Allocation in a Vehicular Edge Computing Network: A Deep Reinforcement Learning Approach
    Huang, Xinyu
    He, Lijun
    Chen, Xing
    Wang, Liejun
    Li, Fan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11) : 8852 - 8868