Retinal layer segmentation using gradient feature calculation in OCT

被引:0
作者
Liu, Lei [1 ]
Liu, Yeman [1 ]
Yan, Xiaoteng [2 ]
Bian, Haiyi [1 ]
Xu, Hang [1 ]
Li, Chunzhong [1 ]
Duan, Hongnan [1 ]
机构
[1] Huaiyin Inst Technol, Fac Elect Informat Engn, Huaian 223003, Jiangsu, Peoples R China
[2] Xuzhou Med Univ, Affiliated Huaian Hosp, Dept Ophthalmol, Huaian 223003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Retinal diseases; optical coherence tomography; retinal layer segmentation; AUTOMATIC SEGMENTATION; IMAGES; PREVALENCE;
D O I
10.1142/S1793545824500214
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Retinal diseases pose significant challenges to global healthcare systems, necessitating accurate and efficient diagnostic methods. Optical Coherence Tomography (OCT) has emerged as a valuable tool for diagnosing and monitoring retinal conditions due to its noncontact and noninvasive nature. This paper presents a novel retinal layering method based on OCT images, aimed at enhancing the accuracy of retinal lesion diagnosis. The method utilizes gradient analysis to effectively identify and segment retinal layers. By selecting a column of pixels as a segmentation line and utilizing gradient information from adjacent pixels, the method initiates and proceeds with the layering process. This approach addresses potential issues arising from partial layer overlapping, minimizing deviations in layer segmentation. Experimental results demonstrate the efficacy of the proposed method in accurately segmenting eight retinal boundaries, with an average absolute position deviation of 1.75 pixels. By providing accurate segmentation of retinal layers, this approach contributes to the early detection and management of ocular conditions, ultimately improving patient outcomes and reducing the global burden of vision-related ailments.
引用
收藏
页数:11
相关论文
共 26 条
[1]   Thickness Profiles of Retinal Layers by Optical Coherence Tomography Image Segmentation [J].
Bagci, Ahmet Murat ;
Shahidi, Mahnaz ;
Ansari, Rashid ;
Blair, Michael ;
Blair, Norman Paul ;
Zelkha, Ruth .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2008, 146 (05) :679-687
[2]  
Bian H., 2022, Biomed. Opt. Express, V14, P194
[3]   Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema [J].
Chiu, Stephanie J. ;
Allingham, Michael J. ;
Mettu, Priyatham S. ;
Cousins, Scott W. ;
Izatt, Joseph A. ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04) :1172-1194
[4]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[5]  
Du WL, 2012, 2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), P279
[6]   Sparsity based denoising of spectral domain optical coherence tomography images [J].
Fang, Leyuan ;
Li, Shutao ;
Nie, Qing ;
Izatt, Joseph A. ;
Toth, Cynthia A. ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (05) :927-942
[7]   Active contour method for ILM segmentation in ONH volume scans in retinal OCT [J].
Gawlik, Kay ;
Hausser, Frank ;
Paul, Friedemann ;
Brandt, Alexander U. ;
Kadas, Ella Maria .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12) :6497-6518
[8]   EXACT MAXIMUM A-POSTERIORI ESTIMATION FOR BINARY IMAGES [J].
GREIG, DM ;
PORTEOUS, BT ;
SEHEULT, AH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (02) :271-279
[9]   Optical coherence tomography imaging biomarkers associated with neovascular age-related macular degeneration: a systematic review [J].
Hanson, Rachel L. W. ;
Airody, Archana ;
Sivaprasad, Sobha ;
Gale, Richard P. .
EYE, 2023, 37 (12) :2438-2453
[10]   OPTICAL COHERENCE TOMOGRAPHY [J].
HUANG, D ;
SWANSON, EA ;
LIN, CP ;
SCHUMAN, JS ;
STINSON, WG ;
CHANG, W ;
HEE, MR ;
FLOTTE, T ;
GREGORY, K ;
PULIAFITO, CA ;
FUJIMOTO, JG .
SCIENCE, 1991, 254 (5035) :1178-1181