Simulation-in-the-loop additive manufacturing for real-time structural validation and digital twin development

被引:0
|
作者
Fu, Yanzhou [1 ]
Downey, Austin R. J. [1 ,2 ]
Yuan, Lang [1 ]
Huang, Hung-Tien [3 ]
Ogunniyi, Emmanuel A. [1 ]
机构
[1] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA
[2] Univ South Carolina, Dept Civil & Environm Engn, Columbia, SC 29208 USA
[3] Univ South Carolina, Dept Comp Sci, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Additive manufacturing; Finite element analysis; Image segmentation; Automatic structural validation; Real-time decision-making; Digital twins; FINITE-ELEMENT-ANALYSIS; STRENGTH; DEFECTS; FAILURE; IMPACT; PARTS; MODEL;
D O I
10.1016/j.addma.2024.104631
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ensuring end-use quality is essential for batch-produced parts, particularly for load-bearing components, where defects can significantly compromise structural integrity. Traditionally, finite element analysis (FEA) has been employed either in pre-process design or as a post-process troubleshooting tool. This paper introduces a novel, in-process, simulation-in-the-loop FEA system for real-time validation of the structural quality of additively manufactured components as they are being produced. We present a case study using a consumer-grade 3D material extrusion printer to validate the proposed system. Defect information is segmented from the layer image using a U-net architecture and fed into a finite element solver to predict the potential structural failure of the specimen in real-time. The proposed vision-based damage detection system achieved a segmentation accuracy of 92.79% on the test data, while the FEA model showed final errors of 4.92% and 3.36% in terms of tensile strengths when compared to the measured specimens with and without impactful defects, respectively. The real-time FEA validation process varies depending on the computer system and the complexity of detected defects. Overall, the framework introduced in this work progresses the state-of-the-art towards ensuring realtime validation and timely decision-making during printing. The proposed algorithm is effective for automatic real-time product structural quality validation and decision-making, as demonstrated in three case studies. Result show that for the three different test cases with different levels of defects, the model predicted the failure strength of the specimen within 5%. The contributions of this paper are threefold: First, a simulation- in-the-loop framework was developed for in-process real-time structural validation of additively manufactured components. Second, advanced image segmentation was integrated for adaptive defect detection, enabling precise localization of defects without prior training on each defect size. Third, a flexible decision-making system was created to evaluate product quality using tailored structural metrics, allowing timely responses to maintain integrity. Together, these innovations forma comprehensive real-time FEA validation system, enhancing reliability in structural assessment for additive manufacturing.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Real-time control of microstructure in laser additive manufacturing
    Farshidianfar, Mohammad H.
    Khajepour, Amir
    Gerlich, Adrian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 82 (5-8): : 1173 - 1186
  • [32] Real-time control of microstructure in laser additive manufacturing
    Mohammad H. Farshidianfar
    Amir Khajepour
    Adrian Gerlich
    The International Journal of Advanced Manufacturing Technology, 2016, 82 : 1173 - 1186
  • [33] DIGITAL COMPUTERS FOR REAL-TIME SIMULATION
    RUBINOFF, M
    JOURNAL OF THE ACM, 1955, 2 (03) : 186 - 204
  • [34] Digital Twin Framework Using Real-Time Asset Tracking for Smart Flexible Manufacturing System
    Ullah, Asif
    Younas, Muhammad
    Saharudin, Mohd Shahneel
    MACHINES, 2025, 13 (01)
  • [35] Design and Implementation of a Hierarchical Digital Twin for Power Systems Using Real-Time Simulation
    Ruhe, Stephan
    Schaefer, Kevin
    Branz, Stefan
    Nicolai, Steffen
    Bretschneider, Peter
    Westermann, Dirk
    ELECTRONICS, 2023, 12 (12)
  • [36] Strategies for Real-Time Simulation of Central Solenoid ITER Power Supply Digital Twin
    Minetti, Manuela
    Bonfiglio, Andrea
    Benfatto, Ivone
    Ye, Yulong
    ENERGIES, 2023, 16 (13)
  • [37] Digital Twin Real-time Hybrid Simulation Platform for Engineering Education in Renewable Energy
    Zhang, Xinan
    Li, Ran
    Wang, Yuxuan
    Manandhar, Ujjal
    PROCEEDINGS OF 2021 31ST AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2021,
  • [38] A Digital Twin of a Remote Real-Time Accessible Labs
    Badawy, Ibrahim
    Bassiuny, A. M.
    Darwish, Rania
    Tolba, A. S.
    TOWARDS A HYBRID, FLEXIBLE AND SOCIALLY ENGAGED HIGHER EDUCATION, VOL 2, ICL2023, 2024, 900 : 200 - 212
  • [39] A real-time digital twin of azimuthal thermoacoustic instabilities
    Nóvoa, Andrea
    Noiray, Nicolas
    Dawson, James R.
    Magri, Luca
    Journal of Fluid Mechanics, 2024, 1001
  • [40] Real-time digital twin for ship operation in waves
    Lee, Jae-Hoon
    Nam, Yoon-Seo
    Kim, Yonghwan
    Liu, Yuming
    Lee, Jaehak
    Yang, Heesuk
    OCEAN ENGINEERING, 2022, 266