Mechanoelectrical Transduction through Anion Recognition with Naphthalenediimide Monolayers at the Air-Water Interface

被引:0
作者
Ishii, Masaki [1 ,2 ]
Nakai, Yuto [1 ,2 ]
Kaneko, Shion [1 ,2 ]
Tanaka, Kohei [2 ]
Yamashita, Yu [1 ]
Sakai, Kenichi [2 ]
Sakai, Hideki [2 ]
Ariga, Katsuhiko [1 ,2 ,3 ]
Akamatsu, Masaaki [2 ,4 ]
机构
[1] Natl Inst Mat Sci NIMS, Res Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Noda, Chiba 2788510, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan
[4] Tottori Univ, Fac Engn, Dept Chem & Biotechnol, Tottori, Tottori 6808552, Japan
关键词
MOLECULAR RECOGNITION; ACID; PIEZOLUMINESCENCE;
D O I
10.1021/acs.langmuir.4c03957
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In biological systems, various stimuli and energies are transduced into membrane potentials via ion transport or binding. The application of this concept to artificial devices may result in biomimetic signal transmitters and energy harvesters. In this study, we investigated the mechanical control of fluoride anion recognition with naphthalenediimide (NDI) monolayers at the air-water interface. Similar to the mechanosensitive ion channels in biological membranes, mechanical stimuli modulated the packing manner of the NDI monolayers, which reproducibly triggered anion binding and concomitant shifts in the membrane potential. Furthermore, mechanical stimuli resulted in anion binding or release, depending on the structure of the alkyl side chains attached to the NDI core, which was explained by the difference in the packing manner of the NDI monolayers. These findings provide insights into the development of novel mechanoelectrical transduction systems that mimic biological processes.
引用
收藏
页码:27040 / 27048
页数:9
相关论文
共 50 条
  • [21] Temperature dependent dendritic domain shapes in Langmuir monolayers of tetradecanoyl N-ethanolamide at the air-water interface
    Hossain, Md. Mufazzal
    Iimura, Kenichi
    Yoshida, Masaki
    Kato, Teiji
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 353 (01) : 220 - 224
  • [22] Self-assembly of DNA networks at the air-water interface over time
    Dai, Xuan
    Wei, Chuanwan
    Li, Zhengyuan
    Sun, Zhifang
    Shen, Rujuan
    Zhang, Yi
    RSC ADVANCES, 2013, 3 (36): : 16116 - 16121
  • [23] INSOLUBLE MONOLAYERS OF IRISRESORCINOL AT THE AIR-WATER-INTERFACE
    KATO, T
    SEKI, K
    KANEKO, R
    COLLOID AND POLYMER SCIENCE, 1990, 268 (10) : 934 - 937
  • [24] Monolayers at Air-Water Interfaces: From Origins-of-Life to Nanotechnology
    Ariga, Katsuhiko
    Hill, Jonathan P.
    CHEMICAL RECORD, 2011, 11 (04) : 199 - 211
  • [25] Cross-linked conjugated polymer assemblies at the air-water interface through supramoleculer bundling
    Wakabayashi, Rie
    Endo, Hiroshi
    Shinkai, Seiji
    Ariga, Katsuhiko
    Takeuchi, Masayuki
    DALTON TRANSACTIONS, 2013, 42 (45) : 15911 - 15914
  • [26] Spontaneous Deprotonation of HO2 • at Air-Water Interface
    Rai, Philips Kumar
    Kumar, Amit
    Kumar, Pradeep
    JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (12) : 2912 - 2921
  • [27] Spontaneous Iodide Activation at the Air-Water Interface of Aqueous Droplets
    Guo, Yunlong
    Li, Kangwei
    Perrier, Sebastien
    An, Taicheng
    Donaldson, D. James
    George, Christian
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (41) : 15580 - 15587
  • [28] Monolayers of mixture of alkylaminomethyl rutin and lecithin at the air/water interface
    He, Fang
    Li, Rui-xia
    Wu, Da-cheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 349 (01) : 215 - 223
  • [29] Highly Ordered Monolayers of an Optically Active Amphiphilic Pyrene Derivative at the Air -Water Interface
    Negi, Shigeru
    Hamori, Mami
    Kitagishi, Hiroaki
    Kano, Koji
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2022, 95 (11) : 1537 - 1545
  • [30] Dramatic Shape Modulation of Surfactant/Diacetylene Microstructures at the Air-Water Interface
    Jiang, Hao
    Jelinek, Raz
    CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (50) : 16747 - 16752