Mechanoelectrical Transduction through Anion Recognition with Naphthalenediimide Monolayers at the Air-Water Interface

被引:0
|
作者
Ishii, Masaki [1 ,2 ]
Nakai, Yuto [1 ,2 ]
Kaneko, Shion [1 ,2 ]
Tanaka, Kohei [2 ]
Yamashita, Yu [1 ]
Sakai, Kenichi [2 ]
Sakai, Hideki [2 ]
Ariga, Katsuhiko [1 ,2 ,3 ]
Akamatsu, Masaaki [2 ,4 ]
机构
[1] Natl Inst Mat Sci NIMS, Res Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Noda, Chiba 2788510, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan
[4] Tottori Univ, Fac Engn, Dept Chem & Biotechnol, Tottori, Tottori 6808552, Japan
关键词
MOLECULAR RECOGNITION; ACID; PIEZOLUMINESCENCE;
D O I
10.1021/acs.langmuir.4c03957
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In biological systems, various stimuli and energies are transduced into membrane potentials via ion transport or binding. The application of this concept to artificial devices may result in biomimetic signal transmitters and energy harvesters. In this study, we investigated the mechanical control of fluoride anion recognition with naphthalenediimide (NDI) monolayers at the air-water interface. Similar to the mechanosensitive ion channels in biological membranes, mechanical stimuli modulated the packing manner of the NDI monolayers, which reproducibly triggered anion binding and concomitant shifts in the membrane potential. Furthermore, mechanical stimuli resulted in anion binding or release, depending on the structure of the alkyl side chains attached to the NDI core, which was explained by the difference in the packing manner of the NDI monolayers. These findings provide insights into the development of novel mechanoelectrical transduction systems that mimic biological processes.
引用
收藏
页码:27040 / 27048
页数:9
相关论文
共 50 条
  • [11] Anion and cation interactions with p-dodecanoylcalix[4]arene monolayers at the air-water interface
    Shahgaldian, P
    Coleman, AW
    LANGMUIR, 2001, 17 (22) : 6851 - 6854
  • [12] SURFACE GELATION OF OVALBUMIN MONOLAYERS AT THE AIR-WATER INTERFACE
    TACHIBANA, T
    INOKUCHI, K
    INOKUCHI, T
    BIOCHIMICA ET BIOPHYSICA ACTA, 1957, 24 (01) : 174 - 177
  • [13] On the smectic order of polymer monolayers at the air-water interface
    Amini, A.
    Robert, M.
    AIP ADVANCES, 2020, 10 (05)
  • [14] Pattern formation in colloidal monolayers at the air-water interface
    Ghezzi, F
    Earnshaw, JC
    Finnis, M
    McCluney, M
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 238 (02) : 433 - 446
  • [15] Relaxation of paclitaxel/lipid monolayers at the air-water interface
    Gong, K
    Feng, SS
    IEEE-EMBS ASIA PACIFIC CONFERENCE ON BIOMEDICAL ENGINEERING - PROCEEDINGS, PTS 1 & 2, 2000, : 593 - 594
  • [16] Kinetics for the collapse of phospholipid monolayers at an air-water interface
    Rugonyi, S
    Smith, EC
    Hall, SB
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 236A - 237A
  • [17] Monoacylglycerol and fatty acid monolayers at the air-water interface
    Szelag, Halina
    Szyszko, Agnieszka
    PRZEMYSL CHEMICZNY, 2006, 85 (8-9): : 1356 - 1358
  • [18] ADSORPTION OF RIBONUCLEASE AT AIR-WATER INTERFACE AND ON PHOSPHOLIPID MONOLAYERS
    KHAIAT, A
    MILLER, IR
    BIOCHIMICA ET BIOPHYSICA ACTA, 1969, 183 (02) : 309 - +
  • [19] Phase transitions in lipid monolayers at the air-water interface
    McConnell, HM
    MICELLES, MICROEMULSIONS, AND MONOLAYERS: SCIENCE AND TECHNOLOGY, 1998, : 387 - 393
  • [20] Properties of lipophilic nucleoside monolayers at the air-water interface
    Montanha, E. A.
    Pavinatto, F. J.
    Caseli, L.
    Kaczmarek, O.
    Liebscher, J.
    Huster, D.
    Oliveira, O. N., Jr.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 77 (02) : 161 - 165