Protocol for Evaluating Anion Exchange Membranes for Nonaqueous Redox Flow Batteries

被引:4
作者
Tami, Jessica L. [1 ]
Mazumder, Md. Motiur R. [2 ]
Cook, Grace E. [1 ]
Minteer, Shelley D. [3 ,4 ]
McNeil, Anne J. [1 ,5 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Utah Tech Univ, Dept Chem & Biochem, St George, UT 84770 USA
[3] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA
[4] Missouri Univ Sci & Technol, Kummer Inst Ctr Resource Sustainabil, Rolla, MO 65409 USA
[5] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
关键词
anion exchange membranes; redox flow batteries; nonaqueous; crossover; permeability; electrochemicalimpedance spectroscopy; voltage efficiency; IONIC-CONDUCTIVITY; SPECIES CROSSOVER; DESIGN; TRANSPORT; ELECTROLYTES; REQUIREMENTS;
D O I
10.1021/acsami.4c07026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nonaqueous redox flow batteries often suffer from reduced battery lifetime and decreased coulombic efficiency due to crossover of the redox-active species through the membrane. One method to mitigate this undesired crossover is to judiciously choose a membrane based on several criteria: swelling and structural integrity, size and charge of redox active species, and ionic conductivity. Most research to date has focused on reducing crossover by synthesizing modified redox-active molecules and/or new membranes. However, no standard protocol exists to compare membranes and a comprehensive study comparing membranes has yet to be done. To address both these limitations, we evaluate herein 26 commercial anion exchange membranes (AEMs) to assess their compatibility with common nonaqueous solvents and their resistance to crossover by using neutral and cationic redox-active molecules. Ultimately, we found that all the evaluated AEMs perform poorly in organic solvents due to uncontrolled swelling, low ionic conductivity, and/or high crossover rates. We believe that this method, and the generated data, will be useful to evaluate and compare the performance of all AEMs-commercial and newly synthesized-and should be implemented as a standard protocol for future research.
引用
收藏
页码:53643 / 53651
页数:9
相关论文
共 68 条
[51]   A Method for Quantifying Crossover in Redox Flow Cells through Compositionally Unbalanced Symmetric Cell Cycling [J].
Neyhouse, Bertrand J. ;
Darling, Robert M. ;
Saraidaridis, James D. ;
Brushett, Fikile R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (08)
[52]   The Chemistry of Redox-Flow Batteries [J].
Noack, Jens ;
Roznyatovskaya, Nataliya ;
Herr, Tatjana ;
Fischer, Peter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) :9775-9808
[53]   Suppressing Crossover in Nonaqueous Redox Flow Batteries with Polyethylene-Based Anion-Exchange Membranes [J].
Peltier, Cheyenne R. ;
Rhodes, Zayn ;
Macbeth, Alexandra J. ;
Milam, Adam ;
Carroll, Emily ;
Coates, Geoffrey W. ;
Minteer, Shelley D. .
ACS ENERGY LETTERS, 2022, 7 (11) :4118-4128
[54]   Developing a Predictive Solubility Model for Monomeric and Oligomeric Cyclopropenium-Based Flow Battery Catholytes [J].
Robinson, Sophia G. ;
Yan, Yichao ;
Hendriks, Koen H. ;
Sanford, Melanie S. ;
Sigman, Matthew S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (26) :10171-10176
[55]   Redox flow batteries: Status and perspective towards sustainable stationary energy storage [J].
Sanchez-Diez, Eduardo ;
Ventosa, Edgar ;
Guarnieri, Massimo ;
Trovo, Andrea ;
Flox, Cristina ;
Marcilla, Rebeca ;
Soavi, Francesca ;
Mazur, Petr ;
Aranzabe, Estibaliz ;
Ferret, Raquel .
JOURNAL OF POWER SOURCES, 2021, 481
[56]   A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective [J].
Shin, Sung-Hee ;
Yun, Sung-Hyun ;
Moon, Seung-Hyeon .
RSC ADVANCES, 2013, 3 (24) :9095-9116
[57]   Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition [J].
Shrestha, Anuska ;
Hendriks, Koen H. ;
Sigman, Mathew S. ;
Minteer, Shelley D. ;
Sanford, Melanie S. .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (24) :5369-5373
[58]   Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries [J].
Small, Leo J. ;
Pratt, Harry D., III ;
Anderson, Travis M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (12) :A2536-A2542
[59]   An Investigation of the Ionic Conductivity and Species Crossover of Lithiated Nafion 117 in Nonaqueous Electrolytes [J].
Su, Liang ;
Darling, Robert M. ;
Gallagher, Kevin G. ;
Xie, Wei ;
Thelen, Jacob L. ;
Badel, Andres F. ;
Barton, John L. ;
Cheng, Kevin J. ;
Balsara, Nitash P. ;
Moore, Jeffrey S. ;
Brushett, Fikile R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5253-A5262
[60]   Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters [J].
Wang, Hao ;
Sayed, Sayed Youssef ;
Luber, Erik J. ;
Olsen, Brian C. ;
Shirurkar, Shubham M. ;
Venkatakrishnan, Sankaranarayanan ;
Tefashe, Ushula M. ;
Farquhar, Anna K. ;
Smotkin, Eugene S. ;
McCreery, Richard L. ;
Buriak, Jillian M. .
ACS NANO, 2020, 14 (03) :2575-2584