DeepGame-TP: Integrating Dynamic Game Theory and Deep Learning for Trajectory Planning

被引:0
作者
Lucente, Giovanni [1 ,2 ]
Maarssoe, Mikkel Skov [1 ]
Konthala, Sanath Himasekhar [1 ]
Abulehia, Anas [1 ]
Dariani, Reza [1 ]
Schindler, Julian [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Transportat Syst, D-38108 Braunschweig, Germany
[2] Tech Univ Berlin, Fak Verkehrs und Maschinensyst, TU Berlin, D-10623 Berlin, Germany
来源
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS | 2024年 / 5卷
关键词
Trajectory; Trajectory planning; Planning; Training; Deep learning; Safety; Real-time systems; Nash equilibrium; Imitation learning; Games; Dynamic game; deep learning; generalized Nash equilibrium; LSTM; trajectory planning; PREDICTION;
D O I
10.1109/OJITS.2024.3515270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory planning for automated vehicles in traffic has been a challenging task and a hot topic in recent research. The need for flexibility, transparency, interpretability and predictability poses challenges in deploying data-driven approaches in this safety-critical application. This paper proposes DeepGame-TP, a game-theoretical trajectory planner that uses deep learning to model each agent's cost function and adjust it based on observed behavior. In particular, a LSTM network predicts each agent's desired speed, forming a penalizing term that reflects aggressiveness in the cost function. Experiments demonstrated significant advantages of this innovative framework, highlighting the adaptability of DeepGame-TP in intersection, overtaking, car following and merging scenarios. It effectively avoids dangerous situations that could arise from incorrect cost function estimates. The approach is suitable for real-time applications, solving the Generalized Nash Equilibrium Problem (GNEP) in scenarios with up to four vehicles in under 100 milliseconds on average.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 41 条
  • [21] Jamgochian A., Buehrle E., Fischer J., Kochenderfer M.J., SHAIL: Safety-aware hierarchical adversarial imitation learning for autonomous driving in urban environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2023, pp. 1530-1536
  • [22] Plebe A., Svensson H., Mahmoud S., Da Lio M., Human-inspired autonomous driving: A survey, Cogn. Syst. Res., 83, 2024
  • [23] Hsu C.-C., Kang L.-W., Chen S.-Y., Wang I.-S., Hong C.-H., Chang C.-Y., Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications, Multimedia Tools Appl, 82, pp. 10763-10780
  • [24] Zhao L., Liu Y., Al-Dubai A.Y., Zomaya A.Y., Min G., Hawbani A., A novel generation-adversarial-network-based vehicle trajectory prediction method for intelligent vehicular networks, IEEE Internet Things J, 8, 3, pp. 2066-2077, (2021)
  • [25] Chen X., Xu J., Zhou R., Chen W., Fang J., Liu C., Trajvae: A variational AutoEncoder model for trajectory generation, Neurocomputing, 428, pp. 332-339, (2021)
  • [26] Choi Y., Mercurius R.C., Shabestary S.M.A., Rasouli A., DICE: Diverse diffusion model with scoring for trajectory prediction
  • [27] Bae I., Park Y.-J., Jeon H.-G., Singulartrajectory: Universal trajectory predictor using diffusion model, 2024
  • [28] Chen K., Chen X., Yu Z., Zhu M., Yang H., EquiDiff: A conditional equivariant diffusion model for trajectory prediction, 2023
  • [29] Lin L., Li W., Bi H., Qin L., Vehicle trajectory prediction using LSTMs with spatial–temporal attention mechanisms, IEEE Intell. Transp. Syst. Mag., 14, 2, pp. 197-208
  • [30] Le Cleac'h S., Schwager M., Manchester Z., ALGAMES: A fast augmented lagrangian solver for constrained dynamic games, Auton. Robots, 46, 1, pp. 201-215, (2022)