DeepGame-TP: Integrating Dynamic Game Theory and Deep Learning for Trajectory Planning

被引:0
作者
Lucente, Giovanni [1 ,2 ]
Maarssoe, Mikkel Skov [1 ]
Konthala, Sanath Himasekhar [1 ]
Abulehia, Anas [1 ]
Dariani, Reza [1 ]
Schindler, Julian [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Transportat Syst, D-38108 Braunschweig, Germany
[2] Tech Univ Berlin, Fak Verkehrs und Maschinensyst, TU Berlin, D-10623 Berlin, Germany
来源
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS | 2024年 / 5卷
关键词
Trajectory; Trajectory planning; Planning; Training; Deep learning; Safety; Real-time systems; Nash equilibrium; Imitation learning; Games; Dynamic game; deep learning; generalized Nash equilibrium; LSTM; trajectory planning; PREDICTION;
D O I
10.1109/OJITS.2024.3515270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory planning for automated vehicles in traffic has been a challenging task and a hot topic in recent research. The need for flexibility, transparency, interpretability and predictability poses challenges in deploying data-driven approaches in this safety-critical application. This paper proposes DeepGame-TP, a game-theoretical trajectory planner that uses deep learning to model each agent's cost function and adjust it based on observed behavior. In particular, a LSTM network predicts each agent's desired speed, forming a penalizing term that reflects aggressiveness in the cost function. Experiments demonstrated significant advantages of this innovative framework, highlighting the adaptability of DeepGame-TP in intersection, overtaking, car following and merging scenarios. It effectively avoids dangerous situations that could arise from incorrect cost function estimates. The approach is suitable for real-time applications, solving the Generalized Nash Equilibrium Problem (GNEP) in scenarios with up to four vehicles in under 100 milliseconds on average.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 41 条
[21]   Informative Trajectory Planning Using Reinforcement Learning for Minimum-Time Exploration of Spatiotemporal Fields [J].
Li, Zhuo ;
You, Keyou ;
Sun, Jian ;
Wang, Gang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) :17216-17226
[22]   Vehicle Trajectory Prediction Using LSTMs with Spatial-Temporal Attention Mechanisms [J].
Lin, Lei ;
Li, Weizi ;
Bi, Huikun ;
Qin, Lingqina .
IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2022, 14 (02) :197-208
[23]   Deep Learning Algorithms for Longitudinal Driving Behavior Prediction: A Comparative Analysis of Convolutional Neural Network and Long-Short-Term Memory Models [J].
Lucente, Giovanni ;
Maarssoe, Mikkel Skov ;
Kahl, Iris ;
Schindler, Julian .
SAE INTERNATIONAL JOURNAL OF CONNECTED AND AUTOMATED VEHICLES, 2024, 7 (04) :389-404
[24]   A Hierarchical LSTM-Based Vehicle Trajectory Prediction Method Considering Interaction Information [J].
Min, Haitao ;
Xiong, Xiaoyong ;
Wang, Pengyu ;
Zhang, Zhaopu .
AUTOMOTIVE INNOVATION, 2024, 7 (01) :71-81
[25]   Adaptive Cruise Control Utilizing Noisy Multi-Leader Measurements: A Learning-Based Approach [J].
Ni, Ying-Chuan ;
Knoop, Victor L. ;
Kooij, Julian F. P. ;
van Arem, Bart .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 5 :251-264
[26]   Human-inspired autonomous driving: A survey [J].
Plebe, Alice ;
Svensson, Henrik ;
Mahmoud, Sara ;
Da Lio, Mauro .
COGNITIVE SYSTEMS RESEARCH, 2024, 83
[27]  
Quigley M, 2009, IEEE INT CONF ROBOT, P3604
[28]  
Rauker T, 2022, Arxiv, DOI arXiv:2207.13243
[29]   Social behavior for autonomous vehicles [J].
Schwarting, Wilko ;
Pierson, Alyssa ;
Alonso-Mora, Javier ;
Karaman, Sertac ;
Rus, Daniela .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) :24972-24978
[30]   Toward Safer Autonomous Vehicles: Occlusion-Aware Trajectory Planning to Minimize Risky Behavior [J].
Trauth, Rainer ;
Moller, Korbinian ;
Betz, Johannes .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 4 :929-942