DeepGame-TP: Integrating Dynamic Game Theory and Deep Learning for Trajectory Planning

被引:0
作者
Lucente, Giovanni [1 ,2 ]
Maarssoe, Mikkel Skov [1 ]
Konthala, Sanath Himasekhar [1 ]
Abulehia, Anas [1 ]
Dariani, Reza [1 ]
Schindler, Julian [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Transportat Syst, D-38108 Braunschweig, Germany
[2] Tech Univ Berlin, Fak Verkehrs und Maschinensyst, TU Berlin, D-10623 Berlin, Germany
来源
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS | 2024年 / 5卷
关键词
Trajectory; Trajectory planning; Planning; Training; Deep learning; Safety; Real-time systems; Nash equilibrium; Imitation learning; Games; Dynamic game; deep learning; generalized Nash equilibrium; LSTM; trajectory planning; PREDICTION;
D O I
10.1109/OJITS.2024.3515270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory planning for automated vehicles in traffic has been a challenging task and a hot topic in recent research. The need for flexibility, transparency, interpretability and predictability poses challenges in deploying data-driven approaches in this safety-critical application. This paper proposes DeepGame-TP, a game-theoretical trajectory planner that uses deep learning to model each agent's cost function and adjust it based on observed behavior. In particular, a LSTM network predicts each agent's desired speed, forming a penalizing term that reflects aggressiveness in the cost function. Experiments demonstrated significant advantages of this innovative framework, highlighting the adaptability of DeepGame-TP in intersection, overtaking, car following and merging scenarios. It effectively avoids dangerous situations that could arise from incorrect cost function estimates. The approach is suitable for real-time applications, solving the Generalized Nash Equilibrium Problem (GNEP) in scenarios with up to four vehicles in under 100 milliseconds on average.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 41 条
[1]  
Andrei N., 2022, Modern Numerical Nonlinear Optimization, P331
[2]  
[Anonymous], 2023, Numerical Optimization
[3]  
Bae I, 2024, Arxiv, DOI arXiv:2403.18452
[4]   Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing [J].
Betz, Johannes ;
Zheng, Hongrui ;
Liniger, Alexander ;
Rosolia, Ugo ;
Karle, Phillip ;
Behl, Madhur ;
Krovi, Venkat ;
Mangharam, Rahul .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 :458-488
[5]   Efficient Constrained Multi-Agent Trajectory Optimization using Dynamic Potential Games [J].
Bhatt, Maulik ;
Jia, Yixuan ;
Mehr, Negar .
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, :7303-7310
[6]   Modeling Human Driving Behavior Through Generative Adversarial Imitation Learning [J].
Bhattacharyya, Raunak ;
Wulfe, Blake ;
Phillips, Derek J. ;
Kuefler, Alex ;
Morton, Jeremy ;
Senanayake, Ransalu ;
Kochenderfer, Mykel J. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (03) :2874-2887
[7]  
Chen KH, 2023, Arxiv, DOI arXiv:2308.06564
[8]   TrajVAE: A Variational AutoEncoder model for trajectory generation [J].
Chen, Xinyu ;
Xu, Jiajie ;
Zhou, Rui ;
Chen, Wei ;
Fang, Junhua ;
Liu, Chengfei .
NEUROCOMPUTING, 2021, 428 :332-339
[9]  
Choi Y, 2023, Arxiv, DOI arXiv:2310.14570
[10]   Exploring the Limitations of Behavior Cloning for Autonomous Driving [J].
Codevilla, Felipe ;
Santana, Eder ;
Lopez, Antonio M. ;
Gaidon, Adrien .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9328-9337