A Semi-Supervised Multiscale Convolutional Sparse Coding-Guided Deep Interpretable Network for Hyperspectral Image Change Detection

被引:0
|
作者
Qu, Jiahui [1 ]
Yang, Peicheng [1 ]
Dong, Wenqian [1 ]
Zhang, Xiaohan [2 ]
Li, Yunsong [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
[2] Satellite Informat Intelligent Proc & Applicat Res, Beijing 100096, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Feature extraction; Hyperspectral imaging; Training; Convolutional codes; Encoding; Filters; Supervised learning; Change detection (CD); deep interpretable network; hyperspectral image (HSI); multiscale convolutional sparse coding (MSCSC); semi-supervised learning;
D O I
10.1109/TGRS.2024.3460105
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deep learning (DL) has increasingly become the mainstream technology for hyperspectral image change detection (HSI-CD). However, these methods lack transparency and often overlook priors in hyperspectral images (HSIs), making it difficult to extract more generalizable features directly from them. Moreover, the performance of DL-based methods typically depends heavily on a large corpus of high-quality labeled data, which is often impractical and expensive in real-world scenarios, particularly for complex HSIs. To address these issues, we propose a semi-supervised deep interpretable network for HSI-CD. Specifically, by applying structured sparse prior constraints, we propose a multiscale convolutional sparse coding (MSCSC) model to capture shared and private sparse coefficients (SSC and PSCs) across different scales, extracting multiscale features while reducing redundancy. We then unfold the proposed MSCSC model to establish an MSCSC-guided deep interpretable network (MSCSCNet) that serves as the encoder, namely, MSCSCNet, in which each network module is model-driven, enhancing the transparency of internal mechanisms and extracting more fundamental features. In addition, we devise a two-stage semi-supervised training strategy for MSCSCNet using limited labeled data, combining a change-sensitive teacher-student self-distillation (CS-TSSD) paradigm with a novel loss function to reduce the annotation dependency and remain sensitive to change components. The proposed method not only enhances the transparency of multiscale feature extraction but also accomplishes semi-supervised learning to extract meaningful representations, effectively integrating the advantages of model-driven and data-driven approaches. Comparative experiments on benchmark datasets demonstrate the effectiveness of our method over the existing approaches. Code is available at https://github.com/Jiahuiqu/MSCSCNet
引用
收藏
页数:14
相关论文
共 50 条
  • [31] GTMSiam: Gated Transmitting-Based Multiscale Siamese Network for Hyperspectral Image Change Detection
    Wang, Xianghai
    Zhao, Keyun
    Zhao, Xiaoyang
    Li, Siyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [32] Wavelet Siamese Network With Semi-Supervised Domain Adaptation for Remote Sensing Image Change Detection
    Xiong, Fengchao
    Li, Tianhan
    Yang, Yi
    Zhou, Jun
    Lu, Jianfeng
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Community Detection using Semi-supervised Learning with Graph Convolutional Network on GPUs
    Sattar, Naw Safrin
    Arifuzzaman, Shaikh
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5237 - 5246
  • [34] Dual-Branch Difference Amplification Graph Convolutional Network for Hyperspectral Image Change Detection
    Qu, Jiahui
    Xu, Yunshuang
    Dong, Wenqian
    Li, Yunsong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Interpretable Multi-Modal Image Registration Network Based on Disentangled Convolutional Sparse Coding
    Deng, Xin
    Liu, Enpeng
    Li, Shengxi
    Duan, Yiping
    Xu, Mai
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1078 - 1091
  • [36] A Deep Neural Network Based on ELM for Semi-supervised Learning of Image Classification
    Chang, Peiju
    Zhang, Jiangshe
    Hu, Junying
    Song, Zengjie
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 375 - 388
  • [37] Consistency-guided lightweight network for semi-supervised binary change detection of buildings in remote sensing images
    Ding, Qing
    Shao, Zhenfeng
    Huang, Xiao
    Feng, Xiaoxiao
    Altan, Orhan
    Hu, Bin
    GISCIENCE & REMOTE SENSING, 2023, 60 (01)
  • [38] A Deep Neural Network Based on ELM for Semi-supervised Learning of Image Classification
    Peiju Chang
    Jiangshe Zhang
    Junying Hu
    Zengjie Song
    Neural Processing Letters, 2018, 48 : 375 - 388
  • [39] Semi-supervised sparse representation classifier (S3RC) with deep features on small sample sized hyperspectral images
    Aydemir, M. Said
    Bilgin, Gokhan
    NEUROCOMPUTING, 2020, 399 : 213 - 226
  • [40] A Semi-Supervised Semantic and Spatial Change Detail Retention Network for Semantic Change Detection in Remote Sensing Images
    Lv, Pengyuan
    Cheng, Peng
    Ma, Chuang
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62