共 44 条
- [1] Wu Z., Pan S., Long G., Jiang J., Zhang C., Graph WaveNet for Deep Spatial-temporal Graph Modeling, (2019)
- [2] Bai L., Yao L., Li C., Wang X., Wang C., Adaptive graph convolutional recurrent network for traffic forecasting, Proc. Adv. Neural Inf. Process. Syst., 33, pp. 17804-17815, (2020)
- [3] Lu B., Gan X., Jin H., Fu L., Zhang H., Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting, Proc. 29th ACM Int. Conf. Inf. Knowl. Manag., pp. 1025-1034, (2020)
- [4] Geng X., Et al., Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, Proc. AAAI Conf. Artif. Intell., 33, pp. 3656-3663, (2019)
- [5] Li M., Zhu Z., Spatial-temporal fusion graph neural networks for traffic flow forecasting, Proc. AAAI Conf. Artif. Intell., 35, pp. 4189-4196, (2021)
- [6] Li Y., Yu R., Shahabi C., Liu Y., Diffusion Convolutional Recurrent Neural Network: Data-driven Traffic Forecasting, (2017)
- [7] Yu B., Yin H., Zhu Z., Spatio-temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, (2017)
- [8] Song C., Lin Y., Guo S., Wan H., Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting, Proc. AAAI Conf. Artif. Intell., 34, pp. 914-921, (2020)
- [9] Ali A., Zhu Y., Chen Q., Yu J., Cai H., Leveraging spatio-temporal patterns for predicting citywide traffic crowd flows using deep hybrid neural networks, Proc. IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), pp. 125-132, (2019)
- [10] Syu J.-H., Lin J.C.-W., Srivastava G., Yu K., A comprehensive survey on artificial intelligence empowered edge computing on consumer electronics, IEEE Trans. Consum. Electron., 69, 4, pp. 1023-1034, (2023)