A W-Band Choke-Ring Encircled Focal Plane Array of Full-Metal Elements for Reflector Antennas With Over 50%-Efficiency High Crossover Beams

被引:0
作者
Chernikov, Viktor S. [1 ]
Vilenskiy, Artem R. [1 ]
Agneessens, Sam [2 ]
Manholm, Lars [2 ]
Ivashina, Marianna V. [1 ]
机构
[1] Chalmers Univ Technol, Dept Elect Engn, Antenna Syst Grp, S-41296 Gothenburg, Sweden
[2] Ericsson, Ericsson Res, S-41756 Gothenburg, Sweden
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 12期
关键词
Apertures; Pins; Inductors; Reflector antennas; Finite element analysis; Antennas; Surface waves; Focal plane array (FPA); high-gain reflector antenna;
D O I
10.1109/LAWP.2024.3458182
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel W-band [(92 to 96) GHz] focal plane array (FPA) for 50 dBi reflector antennas intended for the next-generation point-to-point communication links with antenna mast sway compensation. The FPA comprises seven metal waveguide elements arranged in a hexagonal lattice, ensuring the crossover level of the corresponding reflector beams above $-\text{6}$ dB. The primary challenge of this design is to realize efficient illumination of the reflector for the on-axis and off-axis beams, while keeping a minimum beamforming complexity (i.e., one element per beam) and overcoming array implementation challenges associated with high frequencies. This is accomplished by a high decoupling level of the FPA elements (< -24 dB) and shaping their individual element patterns via a dedicated aperture pin structure between them, and encircling the FPA aperture with a periodically perforated choke ring pair to further improve the illumination by offset elements. The FPA performance, evaluated on an offset parabolic reflector with F/D=0.35, exhibits 52%-68% efficiency, close beam overlap, and good impedance matching. Measurements of the FPA prototype verify the results for all characteristics; the latter are competitive with state-of-the-art solutions.
引用
收藏
页码:4578 / 4582
页数:5
相关论文
共 38 条
  • [1] [Anonymous], 2023, Sway compensation antennas, your E-band friend, with benefits
  • [2] [Anonymous], 2021, Deutsche Telekom, Cosmote and Ericsson look beyond 100 GHz to boost 5G backhaul capacity
  • [3] Arts M, 2010, PROCEEDINGS OF THE FOURTH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION
  • [4] Wide-Scan Focal Plane Arrays for mmWave Point-to-Multipoint Communications
    Bude, Roel X. F.
    Elsakka, Amr
    Johannsen, Ulf
    Smolders, A. Bart
    [J]. IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2022, 3 : 112 - 123
  • [5] X-Band Choke Ring Horn Telecom Antenna for Interference Mitigation on NASA's SWOT Mission
    Chahat, Nacer
    Amaro, Luis R.
    Harrell, Jefferson
    Wang, Charles
    Estabrook, Polly
    Butman, Stanley A.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (06) : 2075 - 2082
  • [6] Chernikov Viktor S., 2023, 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), P765, DOI 10.1109/USNC-URSI52151.2023.10237794
  • [7] Chernikov Viktor, 2024, IEEE DataPort, DOI 10.21227/21EC-9N14
  • [8] A Teflon-Filled Open-Ended Circular Waveguide Focal-Plane-Array Used for Sway Compensation in W-band 50dB-Gain Backhaul Reflector Antennas
    Chernikov, Viktor
    Vilenskiy, Artem
    Agneessens, Sam
    Manholm, Lars
    Kehn, Malcolm Ng Mou
    Ivashina, Marianna
    [J]. 2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 340 - 345
  • [9] An Enhanced K a-Band Reflector Focal-Plane Array Using a Multifeed EBG Structure
    Chreim, H.
    Chantalat, R.
    Thevenot, M.
    Naeem, U.
    Bila, S.
    Monediere, T.
    Palacin, B.
    Cailloce, Y.
    Caille, G.
    De Maagt, P.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 : 1152 - 1156
  • [10] Clarricoats P. J. B., 1984, Corrugated horns for microwave antennas