A ranking improved teaching-learning-based optimization algorithm for parameters identification of photovoltaic models

被引:0
作者
Wang, Haoyu [1 ,2 ]
Yu, Xiaobing [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, China Inst Mfg Dev, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China
关键词
TLBO; PV system; Meta-heuristic algorithm; Parameter identification; I-V CHARACTERISTICS; SOLAR-CELLS; SEARCH ALGORITHM; EXTRACTION; MODULES; PERFORMANCE; MUTATION;
D O I
10.1016/j.asoc.2024.112371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solar energy is an important clean energy source, primarily applied for photovoltaic (PV) power generation. The precise identification of PV system parameters is critical for system control and simulation, posing a challenge due to the models' non-linearity, implicitness, and multiple optimal properties. So, a ranking improved teachinglearning-based optimization (RITLBO) is developed in this work to solve the problem of identifying the parameters of the PV model. RITLBO is a meta-heuristic algorithm based on teaching-learning-based optimization (TLBO) that simulates classroom teacher-student interaction. In RITLBO, learners are classified into inferior and superior groups based on their fitness ranking. During the teacher phase, superior learners emulate the top three agents with the highest fitness for local search, while inferior learners engage in guided mutual learning for global search, effectively utilizing computing resources. In the learner phase, superior learners receive guided information, while inferior learners engage in broader information exchange, balancing exploration and exploitation. RITLBO and fourteen algorithms are used to identify the parameters for five different PV models to confirm that the RITLBO is effective. Statistical results and analysis demonstrate that RITLBO is accurate and reliable in identifying PV model parameters. RITLBO offers promising prospects in optimizing PV system parameters through its unique strategies.
引用
收藏
页数:19
相关论文
共 57 条
  • [1] Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process
    Abdullah, Jaza Mahmood
    Rashid, Tarik Ahmed
    [J]. IEEE ACCESS, 2019, 7 : 43473 - 43486
  • [2] A new estimation approach for determining the I-V characteristics of solar cells
    AlRashidi, M. R.
    AlHajri, M. F.
    El-Naggar, K. M.
    Al-Othman, A. K.
    [J]. SOLAR ENERGY, 2011, 85 (07) : 1543 - 1550
  • [3] Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model
    Ayodele, T. R.
    Ogunjuyigbe, A. S. O.
    Ekoh, E. E.
    [J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2016, 13 : 51 - 59
  • [4] Parameter extraction of two diode solar PV model using Fireworks algorithm
    Babu, T. Sudhakar
    Ram, J. Prasanth
    Sangeetha, K.
    Laudani, Antonino
    Rajasekar, N.
    [J]. SOLAR ENERGY, 2016, 140 : 265 - 276
  • [5] Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases
    Baykasoglu, Adil
    Hamzadayi, Alper
    Kose, Simge Yelkenci
    [J]. INFORMATION SCIENCES, 2014, 276 : 204 - 218
  • [6] Extracting dc parameters of solar cells under illumination
    Chegaar, M
    Ouennoughi, Z
    Guechi, F
    [J]. VACUUM, 2004, 75 (04) : 367 - 372
  • [7] An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models
    Chen, Huiling
    Jiao, Shan
    Heidari, Ali Asghar
    Wang, Mingjing
    Chen, Xu
    Zhao, Xuehua
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 927 - 942
  • [8] Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation
    Chen, Xu
    Xu, Bin
    Mei, Congli
    Ding, Yuhan
    Li, Kangji
    [J]. APPLIED ENERGY, 2018, 212 : 1578 - 1588
  • [9] Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
    Chen, Xu
    Yu, Kunjie
    Du, Wenli
    Zhao, Wenxiang
    Liu, Guohai
    [J]. ENERGY, 2016, 99 : 170 - 180
  • [10] Parameters extraction from commercial solar cells I-V characteristics and shunt analysis
    Chen, Yifeng
    Wang, Xuemeng
    Li, Da
    Hong, Ruijiang
    Shen, Hui
    [J]. APPLIED ENERGY, 2011, 88 (06) : 2239 - 2244