Kolmogorov-Arnold Network in the Fault Diagnosis of Oil-Immersed Power Transformers

被引:0
|
作者
Cabral, Thales W. [1 ]
Gomes, Felippe V. [2 ]
de Lima, Eduardo R. [3 ]
Filho, Jose C. S. S. [1 ]
Meloni, Luis G. P. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Commun, BR-13083852 Campinas, Brazil
[2] Transmissora Alianca Energia Elect SA TAESA, Praca Quinze de Novembro,Ctr, BR-20010010 Rio De Janeiro, Brazil
[3] Inst Pesquisa Eldorado, Dept Hardware Design, BR-13083898 Campinas, Brazil
关键词
Kolmogorov-Arnold Network; power transformers; DGA sensoring; fault diagnosis; artificial intelligence; DISSOLVED-GAS ANALYSIS; FUZZY-LOGIC;
D O I
10.3390/s24237585
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Instabilities in energy supply caused by equipment failures, particularly in power transformers, can significantly impact efficiency and lead to shutdowns, which can affect the population. To address this, researchers have developed fault diagnosis strategies for oil-immersed power transformers using dissolved gas analysis (DGA) to enhance reliability and environmental responsibility. However, the fault diagnosis of oil-immersed power transformers has not been exhaustively investigated. There are gaps related to real scenarios with imbalanced datasets, such as the reliability and robustness of fault diagnosis modules. Strategies with more robust models increase the overall performance of the entire system. To address this issue, we propose a novel approach based on Kolmogorov-Arnold Network (KAN) for the fault diagnosis of power transformers. Our work is the first to employ a dedicated KAN in an imbalanced data real-world scenario, named KANDiag, while also applying the synthetic minority based on probabilistic distribution (SyMProD) technique for balancing the data in the fault diagnosis. Our findings reveal that this pioneering employment of KANDiag achieved the minimal value of Hamming loss-0.0323-which minimized the classification error, guaranteeing enhanced reliability for the whole system. This ground-breaking implementation of KANDiag achieved the highest value of weighted average F1-Score-96.8455%-ensuring the solidity of the approach in the real imbalanced data scenario. In addition, KANDiag gave the highest value for accuracy-96.7728%-demonstrating the robustness of the entire system. Some key outcomes revealed gains of 68.61 percentage points for KANDiag in the fault diagnosis. These advancements emphasize the efficiency and robustness of the proposed system.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Kolmogorov-Arnold Networks for Automated Diagnosis of Urinary Tract Infections
    Dutta, Anurag
    Ramamoorthy, A.
    Lakshmi, M. Gayathri
    Kumar, Pijush Kanti
    JOURNAL OF MOLECULAR PATHOLOGY, 2025, 6 (01):
  • [22] Application of Oil-immersed Transformer Fault Diagnosis Based on Modified Neural Network Combined with PSO
    Huang, Xiongjian
    Han, Haojiang
    Chai, Jun
    Zhu, Qing
    Cai, Hao
    Zhao, Tao
    2021 IEEE THE 4TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY APPLICATIONS (ICPEA 2021), 2021, : 13 - 17
  • [23] FAULT DIAGNOSIS OF POWER TRANSFORMERS WITH NEURAL NETWORK
    Wang Wu
    Zhang Yuan-Min
    Wang Hong Ling
    PROCEEDINGS OF THE 2011 3RD INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGY AND ENGINEERING (ICSTE 2011), 2011, : 581 - 585
  • [24] A General Methodology for Evaluation and Classification of Oil-Immersed Power Transformers: Application to Electrical and Physicochemical Parameters
    Brito, Leonardo da Cunha
    Marques, Andre Pereira
    Ribeiro, Cacilda de Jesus
    de Moura, Nicolas Kemerich
    Dias, Yuri Andrade
    Bezerra Azevedo, Claudio Henrique
    Lopes dos Santos, Jose Augusto
    da Silva Palhares, Pedro Henrique
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (05) : 832 - 839
  • [25] Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey
    Cheng, Lefeng
    Yu, Tao
    ENERGIES, 2018, 11 (04)
  • [26] Fault diagnosis of oil-immersed transformer based on MGTO-BSCN
    Yi, Lingzhi
    Long, Jiao
    Huang, Jianxiong
    Xu, Xunjian
    Feng, Wenqing
    She, Haixiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6021 - 6034
  • [27] Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm
    Zhang Y.
    Feng B.
    Chen Y.
    Liao W.
    Guo C.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (02): : 200 - 206
  • [28] A review of temperature prediction methods for oil-immersed transformers
    Guo, Yi
    Chang, Yuan
    Lu, Bing
    MEASUREMENT, 2025, 239
  • [29] Synthetic diagnostic method for insulation fault of oil-immersed power transformer
    Qian, Z
    Yang, MZ
    Yan, Z
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS, VOLS 1 & 2, 2000, : 872 - 875
  • [30] Predictive Modelingof Dissolved Gas Concentrationin Oil-Immersed Substation Transformers
    Kim, Younghun
    Goyal, Aanchal
    Kumar, Tarun
    2016 THE 4TH IEEE INTERNATIONAL CONFERENCE ON SMART ENERGY GRID ENGINEERING (SEGE), 2016, : 261 - 267