Classification of Painting Style Based on Image Feature Extraction

被引:0
作者
Sun, Yuting [1 ]
机构
[1] Zhoukou Vocat Coll Arts & Sci, Zhoukou 466000, Henan, Peoples R China
关键词
Feature extraction; painting; style classification; ResNet50; attention;
D O I
10.14569/IJACSA.2024.0151173
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The classification of painting style can help viewers find the works they want to appreciate more conveniently, which has a very important role. This paper realized image feature extraction and classification of paintings based on ResNet50. On the basis of ResNet50, squeeze-and-excitation, and convolutional block attention module (CBAM) attention mechanisms were introduced, and different activation functions were selected for improvement. Then, the effect of this method on painting style classification was studied using the Pandora dataset. It was found that ResNet50 obtained the best classification accuracy under a learning rate of 0.0001, a batch size of 32, and 50 iterations. After combining the CBAM attention mechanism, the accuracy rate was 65.64%, which was 6.77% higher than the original ResNet50 and 2.52% higher than ResNet50+SE. Under different activation functions, ResNet50+CBAM (CeLU) had the most excellent performance, with an accuracy rate of 67.13%, and was also superior to the other classification approaches such as Visual Geometry Group (VGG) 16. The findings prove that the proposed approach is applicable to the style classification of painting works and can be applied in practice.
引用
收藏
页码:754 / 759
页数:6
相关论文
共 50 条
  • [21] Computer Aided Bright Lesion Classification in Fundus Image Based on Feature Extraction
    Bhargavi, V. Ratna
    Rajesh, V
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [22] Remote sensing image feature extraction and classification based on contrastive learning method
    Mu X.-D.
    Bai K.
    You X.-A.
    Zhu Y.-Q.
    Chen X.-B.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (09): : 2222 - 2234
  • [23] Residual deep PCA-based feature extraction for hyperspectral image classification
    Minchao Ye
    Chenxi Ji
    Hong Chen
    Ling Lei
    Huijuan Lu
    Yuntao Qian
    Neural Computing and Applications, 2020, 32 : 14287 - 14300
  • [24] Feature Extraction and Scene Classification for Remote Sensing Image Based on Sparse Representation
    Guo, Youliang
    Zhang, Junping
    Zhong, Shengwei
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [25] SIMILARITY PRESERVING ANALYSIS BASED ON SPARSE REPRESENTATION FOR IMAGE FEATURE EXTRACTION AND CLASSIFICATION
    Liu, Qian
    Jing, Xiao-yuan
    Hu, Rui-min
    Yao, Yong-fang
    Yang, Jing-yu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3013 - 3016
  • [26] Active Deep Feature Extraction for Hyperspectral Image Classification Based on Adversarial Learning
    Wang, Xue
    Tan, Kun
    Pan, Cen
    Ding, Jianwei
    Liu, Zhaoxian
    Han, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Nonparametric Fuzzy Feature Extraction for Hyperspectral Image Classification
    Yang, Jinn-Min
    Yu, Pao-Ta
    Kuo, Bor-Chen
    Su, Ming-Hsiang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2010, 12 (03) : 208 - 217
  • [28] A Novel Feature Extraction Method for Hyperspectral Image Classification
    Cui Binge
    Fang Zongqi
    Xie Xiaoyun
    Zhong Yong
    Zhong Liwei
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 51 - 54
  • [29] Residual deep PCA-based feature extraction for hyperspectral image classification
    Ye, Minchao
    Ji, Chenxi
    Chen, Hong
    Lei, Ling
    Lu, Huijuan
    Qian, Yuntao
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18) : 14287 - 14300
  • [30] A Novel Image Classification Algorithm Based on Word Bag Model and Feature Extraction
    Tang, Zikang
    Zhang, Hao
    Zhang, Fanlu
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING (AMCCE 2017), 2017, 118 : 386 - 393