WGS-YOLO: A real-time object detector based on YOLO framework for autonomous driving

被引:5
作者
Yue, Shiqin [1 ,2 ,3 ,4 ]
Zhang, Ziyi Ziyi [1 ,2 ,3 ,4 ]
Shi, Ying Ying [5 ]
Cai, Yonghua [1 ,2 ,3 ,4 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components Te, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Hubei Technol Res Ctr New Energy & Intelligent Con, Wuhan 430070, Peoples R China
[4] Wuhan Univ Technol, Sch Automot Engn, Wuhan 430070, Peoples R China
[5] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
关键词
Autonomous driving; Object detection; Spatial pyramid pooling; Efficient layer aggregation network; NETWORKS;
D O I
10.1016/j.cviu.2024.104200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The safety and reliability of autonomous driving depends on the precision and efficiency of object detection systems. In this paper, a refined adaptation of the YOLO architecture (WGS-YOLO) is developed to improve the detection of pedestrians and vehicles. Specifically, its information fusion is enhanced by incorporating the Weighted Efficient Layer Aggregation Network (W-ELAN) module, an innovative dynamic weighted feature fusion module using channel shuffling. Meanwhile, the computational demands and parameters of the proposed WGS-YOLO are significantly reduced by employing the Space-to-Depth Convolution (SPD-Conv) and the Grouped Spatial Pyramid Pooling (GSPP) modules that have been strategically designed. The performance of our model is evaluated with the BDD100k and DAIR-V2X-V datasets. In terms of mean Average Precision (mAP0.5), 0 . 5 ), the proposed model outperforms the baseline Yolov7 by 12%. Furthermore, extensive experiments are conducted to verify our analysis and the model's robustness across diverse scenarios.
引用
收藏
页数:12
相关论文
共 37 条
[1]  
Balasubramaniam A., 2022, ARXIV
[2]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[3]   YOLOv4-5D: An Effective and Efficient Object Detector for Autonomous Driving [J].
Cai, Yingfeng ;
Luan, Tianyu ;
Gao, Hongbo ;
Wang, Hai ;
Chen, Long ;
Li, Yicheng ;
Sotelo, Miguel Angel ;
Li, Zhixiong .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[4]   Deep Neural Network Based Vehicle and Pedestrian Detection for Autonomous Driving: A Survey [J].
Chen, Long ;
Lin, Shaobo ;
Lu, Xiankai ;
Cao, Dongpu ;
Wu, Hangbin ;
Guo, Chi ;
Liu, Chun ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) :3234-3246
[5]   Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach [J].
Dong, Shifeng ;
Du, Jianming ;
Jiao, Lin ;
Wang, Fenmei ;
Liu, Kang ;
Teng, Yue ;
Wang, Rujing .
INSECTS, 2022, 13 (06)
[6]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[7]   DADNet: Dilated-Attention-Deformable ConvNet for Crowd Counting [J].
Guo, Dan ;
Li, Kun ;
Zha, Zheng-Jun ;
Wang, Meng .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :1823-1832
[8]   Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues [J].
Gupta, Abhishek ;
Anpalagan, Alagan ;
Guan, Ling ;
Khwaja, Ahmed Shaharyar .
ARRAY, 2021, 10
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916