Using Machine Learning for Detection and Prediction of Chronic Diseases

被引:0
|
作者
Yanes, Nacim [1 ,2 ]
Jamel, Leila [3 ]
Alabdullah, Bayan [3 ]
Ezz, Mohamed [4 ]
Mohamed Mostafa, Ayman [4 ]
Shabana, Hossameldeen [5 ]
机构
[1] Manouba Univ, RIADI Lab, Manouba 2010, Tunisia
[2] Gabes Univ, Higher Inst Management Gabes, Gabes 6033, Tunisia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[4] Jouf Univ, Coll Comp & Informat Sci, Sakaka 72388, Saudi Arabia
[5] Shaqra Univ, Coll Med, Shaqra 11961, Saudi Arabia
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Predictive models; Accuracy; Cardiac arrest; Diseases; Heart; Medical services; Data models; Prediction algorithms; Classification algorithms; Tuning; Heart attack prediction; ensemble model; chronic diseases; class imbalance; ML classifiers; model transparency;
D O I
10.1109/ACCESS.2024.3494839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heart attacks are a leading cause of mortality worldwide, necessitating the development of accurate predictive models to enhance early detection and intervention strategies. This study addresses the significant problem of class imbalance in medical datasets, specifically focusing on heart attack prediction using the Behavioral Risk Factor Surveillance System (BRFSS) dataset. To tackle this challenge, advanced machine learning (ML) methods are proposed to involve a refined dataset of 399,875 instances, with 47 significant features maintained through rigorous data cleaning and preparation. Balanced accuracy and macro-recall were chosen as primary metrics to ensure fair performance evaluation across classes in the imbalanced dataset. Our proposed system entails a detailed evaluation of various algorithms known for their effectiveness in managing class imbalance. The LGBM Classifier, XGB Classifier, and Logistic Regression (LR) are optimized using recursive feature elimination and hyperparameter tuning with Optuna. The results of this study are encapsulated in an ensemble model that significantly enhances predictive accuracy. The final model achieved 80.75% balanced accuracy and 79.97% recall for critical heart attack cases (class 1), along with an AUC score of 88.9%, indicating superior class distinction capability. Additionally, the application of SHAP (SHapley Additive exPlanations) analysis provided valuable insights into the contribution of each feature to heart attack likelihood, thus improving model transparency. This study's successful integration of complex ML techniques with interpretability analyses like SHAP marks a substantial advance in early detection and intervention strategies in healthcare. It demonstrates the potential of sophisticated ML approaches for early heart attack detection and prevention, highlighting their value in improving outcomes for patients with chronic diseases. These findings suggest promising pathways for employing advanced analytical tools in healthcare to enhance patient care.
引用
收藏
页码:177674 / 177691
页数:18
相关论文
共 50 条
  • [41] Financial Fraud Detection and Prediction in Listed Companies Using SMOTE and Machine Learning Algorithms
    Zhao, Zhihong
    Bai, Tongyuan
    ENTROPY, 2022, 24 (08)
  • [42] Prediction of Chronic Diseases With Multi-Label Neural Network
    Ge, Ruiquan
    Zhang, Renfeng
    Wang, Pu
    IEEE ACCESS, 2020, 8 : 138210 - 138216
  • [43] Diabetes Prediction using SMOTE and Machine Learning
    Sarayu, Maganti Khyathi
    Bhanu, Shaik Ayesha
    Deekshitha, Karanam
    Meghana, Maduri
    Joseph, Iwin Thanakumar
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 15 - 20
  • [44] Software Quality Prediction Using Machine Learning
    Desai, Bhoushika
    Sungkur, Roopesh Kevin
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2022, 10 (01)
  • [45] Thermal Prediction for Efficient Energy Management of Clouds Using Machine Learning
    Ilager, Shashikant
    Ramamohanarao, Kotagiri
    Buyya, Rajkumar
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (05) : 1044 - 1056
  • [46] A Holistic Approach on Airfare Price Prediction Using Machine Learning Techniques
    Kalampokas, Theofanis
    Tziridis, Konstantinos
    Kalampokas, Nikolaos
    Nikolaou, Alexandros
    Vrochidou, Eleni
    Papakostas, George A.
    IEEE ACCESS, 2023, 11 : 46627 - 46643
  • [47] Fall Risk Prediction Using Wireless Sensor Insoles With Machine Learning
    Agrawal, Dipak K.
    Usaha, Wipawee
    Pojprapai, Soodkhet
    Wattanapan, Pattra
    IEEE ACCESS, 2023, 11 : 23119 - 23126
  • [48] Exploring Bias and Prediction Metrics to Characterise the Fairness of Machine Learning for Equity-Centered Public Health Decision-Making: A Narrative Review
    Raza, Shaina
    Shaban-Nejad, Arash
    Dolatabadi, Elham
    Mamiya, Hiroshi
    IEEE ACCESS, 2024, 12 : 180815 - 180829
  • [49] Multi-Label Classification of Lung Diseases Using Deep Learning
    Irtaza, Muhammad
    Ali, Arshad
    Gulzar, Maryam
    Wali, Aamir
    IEEE ACCESS, 2024, 12 : 124062 - 124080
  • [50] Automated Stroke Prediction Using Machine Learning: An Explainable and Exploratory Study With a Web Application for Early Intervention
    Mridha, Krishna
    Ghimire, Sandesh
    Shin, Jungpil
    Aran, Anmol
    Uddin, Md. Mezbah
    Mridha, M. F.
    IEEE ACCESS, 2023, 11 : 52288 - 52308