Tuning the thermal conductivity of a silicon membrane using nanopillars: From crystalline to amorphous pillars

被引:0
作者
Yang, Lina [1 ]
Xu, Yixin [2 ]
Wang, Xianheng [1 ]
Zhou, Yanguang [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
[3] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Guangdong, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 03期
关键词
MOLECULAR-DYNAMICS; TRANSPORT; PHONON;
D O I
10.1103/PhysRevApplied.22.034016
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tuning thermal transport in nanostructures is essential for many applications, such as thermal management and thermoelectrics. Nanophononic metamaterials (NPMs) have shown great potential for reducing thermal conductivity. In this work, the thermal conductivity of NPMs with crystalline Si (c c-Si) pillar, crystalline Ge (c-Ge) c-Ge) pillar, and amorphous Si (a a-Si) pillar are systematically investigated by a molecular dynamics method. An analysis of phonon dispersion and spectral energy density shows that phonon persions of a Si membrane are flattened due to local resonant hybridization induced by both crystalline amorphous pillars. In addition, an a-Si pillar can cause a larger reduction in thermal conductivity compared with a c-Si pillar. Specifically, when the atomic mass of the atoms in the pillars increases, the thermal conductivity of NPMs with a crystalline pillar increases because of the weakened phonon hybridization. However, the thermal conductivity of NPMs with an amorphous pillar is almost unchanged. The analyses of the reduction of thermal conductivity show that both resonant hybridization and scattering mechanisms are important in NPMs with a crystalline pillar, while the scattering mechanism dominates in NPMs with an amorphous pillar and NPMs with a short crystalline pillar. The results of this work can provide meaningful insights into controlling thermal transport in NPMs by choosing the materials and atomic mass pillars for specific applications.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Tuning network topology and vibrational mode localization to achieve ultralow thermal conductivity in amorphous chalcogenides [J].
Aryana, Kiumars ;
Stewart, Derek A. ;
Gaskins, John T. ;
Nag, Joyeeta ;
Read, John C. ;
Olson, David H. ;
Grobis, Michael K. ;
Hopkins, Patrick E. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[22]   Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations [J].
Fang, Jin ;
Pilon, Laurent .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
[23]   Nanoscale limit of the thermal conductivity in crystalline silicon carbide membranes, nanowires, and phononic crystals [J].
Anufriev, Roman ;
Wu, Yunhui ;
Ordonez-Miranda, Jose ;
Nomura, Masahiro .
NPG ASIA MATERIALS, 2022, 14 (01)
[24]   Effects of vacancy defects on thermal conductivity in crystalline silicon: A nonequilibrium molecular dynamics study [J].
Lee, Yongjin ;
Lee, Sangheon ;
Hwang, Gyeong S. .
PHYSICAL REVIEW B, 2011, 83 (12)
[25]   From amorphous to nanocrystalline: the effect of nanograins in an amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films [J].
Kearney, B. T. ;
Jugdersuren, B. ;
Queen, D. R. ;
Metcalf, T. H. ;
Culbertson, J. C. ;
Desario, P. A. ;
Stroud, R. M. ;
Nemeth, W. ;
Wang, Q. ;
Liu, Xiao .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (08)
[26]   Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations [J].
Honarvar, Hossein ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW B, 2018, 97 (19)
[27]   Exploring High Thermal Conductivity Amorphous Polymers Using Reinforcement Learning [J].
Ma, Ruimin ;
Zhang, Hanfeng ;
Luo, Tengfei .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (13) :15587-15598
[28]   Thermal conductivity modulation mechanism for nanoporous amorphous silica: Insights from propagons, diffusons and locons [J].
Wei, Gaosheng ;
Huang, Chao ;
Wang, Lixin ;
Cui, Liu ;
Du, Xiaoze .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 240
[29]   Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles [J].
Jarolimek, K. ;
Hazrati, E. ;
de Groot, R. A. ;
de Wijs, G. A. .
PHYSICAL REVIEW APPLIED, 2017, 8 (01)
[30]   Computational study of impact of composition, density, and temperature on thermal conductivity of amorphous silicon boron nitride [J].
Dasmahapatra, Atreyi ;
Kroll, Peter .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (08) :3489-3497