共 35 条
- [1] Fowler A. G., Mariantoni M., Martinis J. M., Cleland A. N., Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, 86, (2012)
- [2] Joines N. C., Meter R. V., Fowler A. G., McMahon P. L., Kim J., Ladd T. D., Yamamoto Y., Layered architecture for quantum computing, Phys. Rev. X, 2, (2012)
- [3] Elzerman J. M., Hanson R., Willems van Beveren L. H., Witkamp B., Vandersypen L. M-K., Kouwenhoven L. P., Single-shot read-out of an individual electron spin in a quantum dot, Nature, 430, (2004)
- [4] Bouchiat V., Vion D., Joyez P., Esteve D., Devoret M. H., Quantum coherence with a single Cooper pair, Phys. Scri, (1998)
- [5] Xue X., CMOS-based cryogenic control of silicon quantum circuits, Nature
- [6] Fuketa H., Akita I., Ishikawa T., Koike H., Mori T., A Cryogenic CMOS current integrator and correlation double sampling circuit for spin qubit readout, IEEE T. Chircuits-I, 70
- [7] Beckers A., Jazaeri F., Enz C., Proc. ‘Cryogenic MOSFET Threshold Voltage Model,’ ESSDERC 2019—49th European Solid-State Device Research Conf. (ESSDERC), (2019)
- [8] Beckers A., Jazaeri F., Enz C., Theoretical limit of low temperature subthreshold swing in field-effect transistors, IEEE Electron Device Lett, 41, (2020)
- [9] Oka H., Matsukawa T., Kato K., Iizuka S., Mizubayashi W., Endo K., Yasuda Y., Mori T., Toward long-coherence-time Si Spin Qubit: the origin of low-frequency noise in Cryo-CMOS, Proc. 2020 IEEE Symp. on VLSI Technology, (2020)
- [10] Inaba T., Asai H., Hattori J., Fukuda K., Oka H., Mori T., Importance of source and drain extension design in cryogenic MOSFET operation: causes of unexpected threshold voltage increases, Appl. Phys. Exp, 15