Neural-network-based prediction of cryogenic BSIM4 model parameters from small datasets

被引:0
作者
Inaba, Takumi [1 ]
Chiashi, Yusuke [1 ]
Oka, Hiroshi [1 ]
Ogura, Minoru [1 ]
Asai, Hidehiro [1 ]
Iizuka, Shota [1 ]
Kato, Kimihiko [1 ]
Shitakata, Shunsuke [1 ,2 ]
Fuketa, Hiroshi [1 ]
Mori, Takahiro [1 ]
机构
[1] National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Tsukuba
[2] Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Yokohama
来源
Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers | 2024年 / 63卷 / 12期
基金
日本学术振兴会;
关键词
BSIM4; cryo-CMOS; device modeling; generative model; neural network;
D O I
10.35848/1347-4065/ad9c83
中图分类号
学科分类号
摘要
Neural-network-based prediction of BSIM4 model parameters for current-voltage (I-V) characteristics of short-channel bulk MOSFETs at 4 K was examined. Combining two neural network (NN) models and the least-squares method enabled the extraction of model parameters from only 4 experimentally obtained Id-Vg characteristics of 2 cryogenic MOSFETs, contributing to reducing time and financial costs for cryogenic device modeling. The proposed protocol provided lower root-mean-squared errors than the case where the least-squares method was solely employed. The superiority of the proposed protocol became evident as the number of model parameters increased, attributed to NNs providing good initial guesses for the least-squares method. As a result, cryogenic MOSFETs’ characteristics were fit by BSIM4 with the 6.6% error. This study also emphasizes the superiority of generative NN models over regression NN models for model parameter extraction by demonstrating the parameter extraction for highly correlated model parameters relating to threshold voltage. © 2024 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd.
引用
收藏
相关论文
共 35 条
  • [1] Fowler A. G., Mariantoni M., Martinis J. M., Cleland A. N., Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, 86, (2012)
  • [2] Joines N. C., Meter R. V., Fowler A. G., McMahon P. L., Kim J., Ladd T. D., Yamamoto Y., Layered architecture for quantum computing, Phys. Rev. X, 2, (2012)
  • [3] Elzerman J. M., Hanson R., Willems van Beveren L. H., Witkamp B., Vandersypen L. M-K., Kouwenhoven L. P., Single-shot read-out of an individual electron spin in a quantum dot, Nature, 430, (2004)
  • [4] Bouchiat V., Vion D., Joyez P., Esteve D., Devoret M. H., Quantum coherence with a single Cooper pair, Phys. Scri, (1998)
  • [5] Xue X., CMOS-based cryogenic control of silicon quantum circuits, Nature
  • [6] Fuketa H., Akita I., Ishikawa T., Koike H., Mori T., A Cryogenic CMOS current integrator and correlation double sampling circuit for spin qubit readout, IEEE T. Chircuits-I, 70
  • [7] Beckers A., Jazaeri F., Enz C., Proc. ‘Cryogenic MOSFET Threshold Voltage Model,’ ESSDERC 2019—49th European Solid-State Device Research Conf. (ESSDERC), (2019)
  • [8] Beckers A., Jazaeri F., Enz C., Theoretical limit of low temperature subthreshold swing in field-effect transistors, IEEE Electron Device Lett, 41, (2020)
  • [9] Oka H., Matsukawa T., Kato K., Iizuka S., Mizubayashi W., Endo K., Yasuda Y., Mori T., Toward long-coherence-time Si Spin Qubit: the origin of low-frequency noise in Cryo-CMOS, Proc. 2020 IEEE Symp. on VLSI Technology, (2020)
  • [10] Inaba T., Asai H., Hattori J., Fukuda K., Oka H., Mori T., Importance of source and drain extension design in cryogenic MOSFET operation: causes of unexpected threshold voltage increases, Appl. Phys. Exp, 15