Enhanced flow number prediction of asphalt mixtures using stacking ensemble-based machine learning model and grey relational analysis

被引:0
|
作者
Guan, Yunhao [1 ]
Zhang, Biwei [1 ]
Li, Zuoqiang [1 ]
Zhang, Derun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Civil & Hydraul Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Changsha Univ Sci & Technol, Natl Engn Res Ctr Highway Maintenance Technol, Changsha 410114, Hunan, Peoples R China
关键词
Asphalt mixture; Flow number; Machine learning; Stacking; Predictive model; Grey relational analysis; PERMANENT DEFORMATION; PERFORMANCE;
D O I
10.1016/j.conbuildmat.2025.140001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The flow number (FN) is used as a key indicator of the rutting susceptibility of asphalt mixtures. However, traditional testing methods for FN are costly and complex to implement. This study aimed to develop machine learning (ML) models for predicting FN using four algorithms: Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forests (RF), and Extreme Gradient Boosting (XGB). A comprehensive experimental database, comprising 14 distinct features and 1005 instances, was utilized for model development. Grey Relational Analysis (GRA) was applied to evaluate the significance of individual features on FN and select critical features before modeling. Furthermore, the Stacking ensemble method was employed to integrate four base models, resulting in a more robust predictor. The results indicated that the stacking ensemble-based ML model outperforms individual base models, achieving enhanced prediction accuracy for FN, with a remarkable MSE of 0.0027, MAE of 0.0134, and R 2 of 0.9920. Compared to other models, there was approximately a 90 % reduction in both MSE and MAE for the stacking model, underscoring the effectiveness of stacking in integrating the strengths of different base models and reducing the errors of individual models. The stacking ensemble-based ML model with GRA provides a robust and adaptable approach for accurately predicting the FN of asphalt mixtures. These findings offer valuable insights for research on asphalt pavement design.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] An enhanced grey wolf optimizer boosted machine learning prediction model for patient-flow prediction
    Zhang, Xiang
    Lu, Bin
    Zhang, Lyuzheng
    Pan, Zhifang
    Liao, Minjie
    Shen, Huihui
    Zhang, Li
    Liu, Lei
    Li, Zuxiang
    Hu, Yipao
    Gao, Zhihong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [22] Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models
    Li, Huajin
    Xu, Qiang
    He, Yusen
    Deng, Jiahao
    LANDSLIDES, 2018, 15 (10) : 2047 - 2059
  • [23] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [24] An Ensemble-Based Machine Learning Model for Forecasting Network Traffic in VANET
    Amiri, Parvin Ahmadi Doval
    Pierre, Samuel
    IEEE ACCESS, 2023, 11 : 22855 - 22870
  • [25] An Ensemble-Based Machine Learning Model for Emotion and Mental Health Detection
    Jonnalagadda, Annapurna
    Rajvir, Manan
    Singh, Shovan
    Chandramouliswaran, S.
    George, Joshua
    Kamalov, Firuz
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (02)
  • [26] Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models
    Huajin Li
    Qiang Xu
    Yusen He
    Jiahao Deng
    Landslides, 2018, 15 : 2047 - 2059
  • [27] Early Diabetes Prediction Based on Stacking Ensemble Learning Model
    Liu, JiMin
    Fan, LuHao
    Jia, QuanQiu
    Wen, LongRi
    Shi, ChengFeng
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2687 - 2692
  • [28] Software Defect Prediction Using an Intelligent Ensemble-Based Model
    Ali, Misbah
    Mazhar, Tehseen
    Arif, Yasir
    Al-Otaibi, Shaha
    Ghadi, Yazeed Yasin
    Shahzad, Tariq
    Khan, Muhammad Amir
    Hamam, Habib
    IEEE ACCESS, 2024, 12 : 20376 - 20395
  • [29] Ensemble-based deep learning techniques for customer churn prediction model
    Subramanian, R. Siva
    Yamini, B.
    Sudha, Kothandapani
    Sivakumar, S.
    KYBERNETES, 2024,
  • [30] Enhancing Telemarketing Success Using Ensemble-Based Online Machine Learning
    Kaisar, Shahriar
    Rashid, Md Mamunur
    Chowdhury, Abdullahi
    Shafin, Sakib Shahriar
    Kamruzzaman, Joarder
    Diro, Abebe
    BIG DATA MINING AND ANALYTICS, 2024, 7 (02): : 294 - 314