共 16 条
- [1] BRAUE D., Global ransomware damage costs predicted to exceed $265 billion by 2031
- [2] MCINTOSH T, KAYES A S M, CHEN Y P P, Et al., Ran⁃ somware mitigation in the modern era: A comprehensive review, research challenges, and future directions, ACM Computing Surveys, 54, 9, (2021)
- [3] KHAMMAS B M., Ransomware detection using random forest technique, ICT Express, 6, 4, pp. 325-331, (2020)
- [4] ZHANG B, XIAO W T, XIAO X, Et al., Ransomware clas⁃ sification using patch-based CNN and self-attention net⁃ work on embedded N-grams of opcodes, Future Genera⁃ tion Computer Systems, 110, pp. 708-720, (2020)
- [5] DENG X Z, CEN M C, JIANG M, Et al., Ransomware ear⁃ ly detection using deep reinforcement learning on portable executable header[J/OL], Cluster Computing, (2023)
- [6] JETHVA B, TRAORE I, GHALEB A, Et al., Multilayer ransomware detection using grouped registry key opera⁃ tions, file entropy and file signature monitoring, Journal of Computer Security, 28, 3, pp. 337-373, (2020)
- [7] QIN B, WANG Y L, MA C C., API call based ransomware dynamic detection approach using TextCNN, 2020 In⁃ ternational Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 162-166, (2020)
- [8] GULMEZ S, GORGULU KAKISIM A, SOGUKPINAR I., XRan: Explainable deep learning-based ransomware detec⁃ tion using dynamic analysis, Computers & Security, 139, (2024)
- [9] LIU W J, GUO C, SHEN G W, Et al., Ransomware early detection method based on deep learning, Computer Sci⁃ ence, 50, 3, pp. 391-398, (2023)
- [10] ALI SALEH AL-RIMY B, MAAROF M A, ALAZAB M, Et al., Redundancy coefficient gradual up-weighting-based mutual information feature selection technique for crypto-ransomware early detection, Future Generation Computer Systems, 115, pp. 641-658, (2021)