Analytical Modeling for Photocurrent and Detectivity of TiO2/ZnS Core-Shell Quantum Dot Photodetectors

被引:0
作者
Paul P. [1 ]
Biswas J. [2 ]
Kabi S. [1 ]
Chattopadhyay S. [3 ]
机构
[1] Department of Physics, Sikkim Manipal Institute of Technology, SMU, Sikkim
[2] Department of Chemistry, Sikkim Manipal Institute of Technology, SMU, Sikkim
[3] Department of Physics, School of Basic Sciences, Manipal University Jaipur, Rajasthan, Jaipur
关键词
core-shell structure; detectivity; photocurrent; quantum dot;
D O I
10.1002/masy.202200209
中图分类号
学科分类号
摘要
In this paper, a theoretical model has been presented to calculate the photocurrent and detectivity in a TiO2/ZnS core-shell quantum dot (CSQD) photodetector. Analytical modeling permits to calculate the available photocurrent and corresponding detectivity from the CSQD structures. In this theoretical model, the subband energy levels of the CSQD are estimated using the 3D symmetric quantum box structures with a finite potential barrier. The finite band offset determines the number of available subband energy levels in the CSQD structures depending on the size of the core. Theoretical results show the variation of photocurrent and corresponding detectivity with different core sizes of the CSQD for a constant shell thickness. The calculations indicate that for electronic intersubband transitions detectivity is higher compared with the hole transitions. © 2024 Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
[41]   Hydrothermal Synthesis and Fluorescence Properties of AgInS2/ZnS Core/Shell Quantum Dots [J].
Chen, Ting ;
Hu, Xiao-Bo ;
Xu, Yan-Qiao ;
Wang, Lian-Jun ;
Jiang, Wan ;
Jiang, Wei-Hui ;
Xie, Zhi-Xiang .
CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (01) :69-78
[42]   Heterojunction TiO2/PbS Quantum dot Solar Cells [J].
Ajayakumar, Neethu ;
Sreekala, C. O. ;
Tom, Anju Elsa ;
Thomas, Ajith ;
Ison, V. V. .
2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, AND OPTIMIZATION TECHNIQUES (ICEEOT), 2016, :4622-4624
[43]   Absorption Coefficients of GaN / AlxGa1 - xN Core-Shell Spherical Quantum Dot [J].
Abouelaoualim, D. ;
Elkadadra, A. ;
Oueriagli, A. ;
Outzourhit, A. .
JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2012, 4 (03)
[44]   Effect of Confinement Strength on the Conversion Efficiency of Strained Core-Shell Quantum Dot Solar Cell [J].
Sahu, Anupam ;
Kumar, Dharmendra .
OPTICS AND SPECTROSCOPY, 2020, 128 (10) :1649-1657
[45]   Acid-Treated PEDOT:PSS Polymer and TiO2 Nanorod Schottky Junction Ultraviolet Photodetectors with Ultrahigh External Quantum Efficiency, Detectivity, and Responsivity [J].
Dhar, Saurab ;
Chakraborty, Pinak ;
Majumder, Tanmoy ;
Mondal, Suvra Prakash .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (48) :41618-41626
[46]   Controllable Synthesis of MIL-101(Cr)@TiO2 Core-Shell Nanocomposites for Enhanced Photocatalytic Activity [J].
Liu, Qi ;
Lai, Longjie ;
Li, Zhengdao ;
Hu, Jiyue ;
Zhang, Li ;
Younas, Waqar ;
Mao, Guobing .
ACS APPLIED NANO MATERIALS, 2023, 6 (13) :11764-11771
[47]   TiO2/CuS core-shell nanorod arrays with aging-induced photoelectric conversion enhancement effect [J].
Zhao, Xiaoli ;
Zhao, Kaiqi ;
Su, Jun ;
Sun, Lidong .
ELECTROCHEMISTRY COMMUNICATIONS, 2020, 111
[48]   Rapid gas-liquid detonation synthesis of core-shell structural graphite coated TiO2 nanoparticles [J].
Luo, Ning ;
Xiang, Jun-Xiang ;
Liang, Han-Liang ;
Sun, Xin ;
Ma, Zhan-Guo ;
Yang, Wei-Hao ;
Jing, Hong-Wen .
DIAMOND AND RELATED MATERIALS, 2019, 92 :61-64
[49]   Insight into the enhanced magnetic separation and photocatalytic activity of Sn-doped TiO2 core-shell photocatalyst [J].
Lu, Feiyan ;
Chen, Kao ;
Feng, Qingge ;
Cai, Huidong ;
Ma, Dachao ;
Wang, Dongbo ;
Li, Xiang ;
Zuo, Chen ;
Wang, Sinan .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05)
[50]   Synthesis and characterization of In1-xGaxP@ZnS alloy core-shell type colloidal quantum dots [J].
Joo, Jinwhan ;
Choi, Yonghoon ;
Suh, Yo-Han ;
Lee, Chang-Lyoul ;
Bae, Joonwon ;
Park, Jongnam .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 88 :106-110