Analytical Modeling for Photocurrent and Detectivity of TiO2/ZnS Core-Shell Quantum Dot Photodetectors

被引:0
作者
Paul, Payal [1 ]
Biswas, Joydeep [2 ]
Kabi, Sanjib [1 ]
Chattopadhyay, Saikat [3 ]
机构
[1] SMU, Sikkim Manipal Inst Technol, Dept Phys, Rangpo 737136, Sikkim, India
[2] SMU, Sikkim Manipal Inst Technol, Dept Chem, Rangpo 737136, Sikkim, India
[3] Manipal Univ Jaipur, Sch Basic Sci, Dept Phys, Jaipur 303007, Rajasthan, India
关键词
core-shell structure; detectivity; photocurrent; quantum dot; PERFORMANCE;
D O I
10.1002/masy.202200209
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this paper, a theoretical model has been presented to calculate the photocurrent and detectivity in a TiO2/ZnS core-shell quantum dot (CSQD) photodetector. Analytical modeling permits to calculate the available photocurrent and corresponding detectivity from the CSQD structures. In this theoretical model, the subband energy levels of the CSQD are estimated using the 3D symmetric quantum box structures with a finite potential barrier. The finite band offset determines the number of available subband energy levels in the CSQD structures depending on the size of the core. Theoretical results show the variation of photocurrent and corresponding detectivity with different core sizes of the CSQD for a constant shell thickness. The calculations indicate that for electronic intersubband transitions detectivity is higher compared with the hole transitions.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Preparation of ZnSe/ZnS Core-Shell Quantum Dots Under UV Irradiation [J].
Zhang Cong-cong ;
Liu Lian-dong ;
Xia Lei ;
Li Xue ;
Zhang Xiao-kai .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (11) :3409-3415
[22]   Molecular Linker Enhanced Assembly of CdSe/ZnS Core-Shell Quantum Dots [J].
Cho, Geun Tae ;
Lee, Jong Hyeon ;
Nam, Hye Jin ;
Jung, Duk-Young .
KOREAN CHEMICAL ENGINEERING RESEARCH, 2008, 46 (06) :1081-1086
[23]   Comparative study between CBD and SILAR methods for deposited TiO2, CdS, and TiO2/CdS core-shell structure [J].
Al-Jawad, Selma M. H. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 67 :75-83
[24]   Preparation of Ag@Au core-shell nanoparticles embedded in TiO2 inverse opal for light harvesting and efficiency enhancement in quantum dot sensitized solar cells [J].
Kordasht, Sanaz Ahmadian ;
Amani-Ghadim, Ali Reza ;
Bayat, Farzaneh .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
[25]   Enhanced lubrication by core-shell TiO2 nanoparticles modified with PEG-400 [J].
Wei, Yukun ;
Dai, Leyang ;
Fang, YanFei ;
Sheng, Chen Xing ;
Rao, Xiang .
INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2023, 75 (04) :415-423
[26]   Synthesis, structures and applications of single component core-shell structured TiO2: A review [J].
Hu, Haiyang ;
Lin, Yan ;
Hu, Yun Hang .
CHEMICAL ENGINEERING JOURNAL, 2019, 375
[27]   The Microemulsion Method for Preparing TiO2 Coated SiO2 Core-shell Particles [J].
Xie, Jing ;
Mei, Lefu ;
Liao, Libing ;
Lv, Guocheng ;
Xia, Zhiguo ;
Du, Gaoxiang .
HIGH-PERFORMANCE CERAMICS VIII, 2014, 602-603 :59-62
[28]   Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO-TiO2 core-shell nanorod electrodes [J].
Irannejad, A. ;
Janghorban, K. ;
Tan, O. K. ;
Huang, H. ;
Lim, C. K. ;
Tan, P. Y. ;
Fang, X. ;
Chua, C. S. ;
Maleksaeedi, S. ;
Hejazi, S. M. H. ;
Shahjamali, M. M. ;
Ghaffari, M. .
ELECTROCHIMICA ACTA, 2011, 58 :19-24
[29]   Preparation of core-shell SiO2/ZnS and hollow nanospheres [J].
Xu Yang-Zi ;
Hu He .
JOURNAL OF INORGANIC MATERIALS, 2007, 22 (05) :847-852
[30]   Synthesis and characterization of CuInSe2 core-shell quantum dots [J].
Mazing, D. S. ;
Karmanov, A. A. ;
Matyushkin, L. B. ;
Aleksandrova, O. A. ;
Pronin, I. A. ;
Moshnikov, V. A. .
GLASS PHYSICS AND CHEMISTRY, 2016, 42 (05) :497-504