ETFT: Equiangular Tight Frame Transformer for Imbalanced Semantic Segmentation

被引:0
|
作者
Jeong, Seonggyun [1 ]
Heo, Yong Seok [1 ,2 ]
机构
[1] Ajou Univ, Dept Artificial Intelligence, Suwon 16499, South Korea
[2] Ajou Univ, Dept Elect & Comp Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
semantic segmentation; neural collapse; class imbalance; transformer;
D O I
10.3390/s24216913
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Semantic segmentation often suffers from class imbalance, where the label ratio for each class in the dataset is not uniform. Recent studies have addressed the issue of class imbalance in semantic segmentation by leveraging the neural collapse phenomenon in conjunction with an Equiangular Tight Frame (ETF). While the use of ETF aids in enhancing the discriminability of minor classes, class correlation is another crucial factor that must be taken into account. However, managing the balance between class correlation and discrimination through neural collapse remains challenging, as these properties inherently conflict with one another. Moreover, this control is established during the training stage, resulting in a fixed classifier. There is no guarantee that this classifier will consistently perform well with different input images. To address this problem, we propose an Equiangular Tight Frame Transformer (ETFT), a transformer-based model that jointly processes the features and classifier using ETF structure, and dynamically generates the classifier as a function of the input for imbalanced semantic segmentation. Specifically, the classifier initialized with the ETF structure is jointly processed with the input patch tokens during the attention process. As a result, the transformed patch tokens, aided by the ETF structure, achieve discriminability between classes while preserving contextual correlation. The classifier, initially structured as an ETF, is adjusted to incorporate the correlation information, benefiting from the attention mechanism. Furthermore, the learned classifier is combined with the fixed ETF classifier, leveraging the advantages of both. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art methods for imbalanced semantic segmentation on both the ADE20K and Cityscapes datasets.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] TrSeg: Transformer for semantic segmentation
    Jin, Youngsaeng
    Han, David
    Ko, Hanseok
    PATTERN RECOGNITION LETTERS, 2021, 148 : 29 - 35
  • [2] TransRVNet: LiDAR Semantic Segmentation With Transformer
    Cheng, Hui-Xian
    Han, Xian-Feng
    Xiao, Guo-Qiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 5895 - 5907
  • [3] Pyramid Fusion Transformer for Semantic Segmentation
    Qin, Zipeng
    Liu, Jianbo
    Zhang, Xiaolin
    Tian, Maoqing
    Zhou, Aojun
    Yi, Shuai
    Li, Hongsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9630 - 9643
  • [4] MMSFormer: Multimodal Transformer for Material and Semantic Segmentation
    Reza, Md Kaykobad
    Prater-Bennette, Ashley
    Asif, M. Salman
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 599 - 610
  • [5] Hard example learning based on neural collapse for class-imbalanced semantic segmentation
    Xie, Lu
    Li, Weigang
    Zhao, Yuntao
    APPLIED SOFT COMPUTING, 2025, 171
  • [6] Video Semantic Segmentation via Sparse Temporal Transformer
    Li, Jiangtong
    Wang, Wentao
    Chen, Junjie
    Niu, Li
    Si, Jianlou
    Qian, Chen
    Zhang, Liqing
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 59 - 68
  • [7] Semantic segmentation feature fusion network based on transformer
    Li, Tianping
    Cui, Zhaotong
    Zhang, Hua
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] LNFormer: Lightweight Design for Nighttime Semantic Segmentation With Transformer
    Wei, Longsheng
    Liao, Yuhang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [9] Full-Scale Selective Transformer for Semantic Segmentation
    Lin, Fangjian
    Wu, Sitong
    Ma, Yizhe
    Tian, Shengwei
    COMPUTER VISION - ACCV 2022, PT VII, 2023, 13847 : 310 - 326
  • [10] Efficient and adaptive semantic segmentation network based on Transformer
    Zhang H.-B.
    Cai L.
    Ren J.-P.
    Wang R.-Y.
    Liu F.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (06): : 1205 - 1214