Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities

被引:0
|
作者
Mboumba, Maik Delon [1 ,2 ]
Kamsap, Marius Romuald [1 ]
Moubissi, Alain Brice [1 ]
Ekogo, Thierry Blanchard [1 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Sci & Tech Masuku, Dept Phys, Lab Opt Laser & Applicat, BP 943, Franceville, Gabon
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
关键词
coupled Bose-einstein condensates; modulational instability; soliton; time-dependent variational approach; higher order nonlinearity; 03.75.Lm; 03.75.Kk; MATTER WAVES; SPIN-ORBIT; BOSE; SOLITONS;
D O I
10.1088/1402-4896/ad8f77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the existence of modulational instability ( MI ) in both trapped miscible and immiscible two component Bose-Einstein condensates. The study is addressed theoretically and numerically in the framework of one-dimensional coupled Gross-Pitaevskii equations incorporating intra- and interspecies cubic-quintic nonlinearities with higher-order ones. Using the time-dependent variational approach, we derive the new Euler-Langrange equations for the time evolution of the phase and amplitude of the modulational perturbation as well as the effective potential and the instability criteria of the system. We examine the effects of higher order nonlinearities on the instability dynamics of the condensates. We show that the modulational properties of the chosen wave numbers are significantly modified. Direct numerical simulations run by the split step Fourier method confirm the analytical predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Modulation instability in nonlinear metamaterials induced by cubic-quintic nonlinearities and higher order dispersive effects
    Saha, Manirupa
    Sarma, Amarendra K.
    OPTICS COMMUNICATIONS, 2013, 291 : 321 - 325
  • [42] THREE-BODY INTERACTIONS BEYOND THE GROSS-PITAEVSKII EQUATION AND MODULATIONAL INSTABILITY OF BOSE-EINSTEIN CONDENSATES
    Belobo, Didier Belobo
    Ben-Bolie, Germain Hubert
    Kofane, Timoleon Crepin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (32):
  • [43] Dissipative Solitons in a Generalized Coupled Cubic-Quintic Ginzburg-Landau Equations
    Zakeri, Gholam-Ali
    Yomba, Emmanuel
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (08)
  • [44] Localized waves of the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Xu, Tao
    Chen, Yong
    Lin, Ji
    CHINESE PHYSICS B, 2017, 26 (12)
  • [45] Solitary pulses in linearly coupled cubic-quintic Ginzburg-Landau equations
    Sigler, A
    Malomed, BA
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 212 (3-4) : 305 - 316
  • [46] Bright solitons for the coupled cubic-quintic non-linear Schrodinger equations
    Xie, Xi-Yang
    Tian, Bo
    Sun, Ya
    Liu, Lei
    Jiang, Yan
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (11)
  • [47] Global existence for defocusing cubic NLS and Gross-Pitaevskii equations in three dimensional exterior domains
    Anton, Ramona
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (04): : 335 - 354
  • [48] Peregrine Soliton Management of Breathers in Two Coupled Gross-Pitaevskii Equations with External Potential
    Chaachoua Sameut, H.
    Pattu, Sakthivinayagam
    Al Khawaja, U.
    Benarous, M.
    Belkroukra, H.
    PHYSICS OF WAVE PHENOMENA, 2020, 28 (03) : 305 - 312
  • [49] Optimal error estimates of explicit finite difference schemes for the coupled Gross-Pitaevskii equations
    Liao, Feng
    Zhang, Luming
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1874 - 1892
  • [50] BLOW-UP SOLUTIONS FOR TWO COUPLED GROSS-PITAEVSKII EQUATIONS WITH ATTRACTIVE INTERACTIONS
    Guo, Yujin
    Zeng, Xiaoyu
    Zhou, Huan-Song
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3749 - 3786