Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities

被引:0
|
作者
Mboumba, Maik Delon [1 ,2 ]
Kamsap, Marius Romuald [1 ]
Moubissi, Alain Brice [1 ]
Ekogo, Thierry Blanchard [1 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Sci & Tech Masuku, Dept Phys, Lab Opt Laser & Applicat, BP 943, Franceville, Gabon
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
关键词
coupled Bose-einstein condensates; modulational instability; soliton; time-dependent variational approach; higher order nonlinearity; 03.75.Lm; 03.75.Kk; MATTER WAVES; SPIN-ORBIT; BOSE; SOLITONS;
D O I
10.1088/1402-4896/ad8f77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the existence of modulational instability ( MI ) in both trapped miscible and immiscible two component Bose-Einstein condensates. The study is addressed theoretically and numerically in the framework of one-dimensional coupled Gross-Pitaevskii equations incorporating intra- and interspecies cubic-quintic nonlinearities with higher-order ones. Using the time-dependent variational approach, we derive the new Euler-Langrange equations for the time evolution of the phase and amplitude of the modulational perturbation as well as the effective potential and the instability criteria of the system. We examine the effects of higher order nonlinearities on the instability dynamics of the condensates. We show that the modulational properties of the chosen wave numbers are significantly modified. Direct numerical simulations run by the split step Fourier method confirm the analytical predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Modulational instability of truncated Airy pulses in cubic-quintic nonlinearoptical waveguides with multiphoton absorptions
    Boukar, Souang Kemedane
    Heuteu, Crepin
    Mandeng, Lucien Mandeng
    Tchawoua, Clement
    OPTICS COMMUNICATIONS, 2022, 521
  • [32] Cubic-quintic nonlinear Helmholtz equation: Modulational instability, chirped elliptic and solitary waves
    Tamilselvan, K.
    Kanna, T.
    Govindarajan, A.
    CHAOS, 2019, 29 (06)
  • [33] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [34] Modulational instability of optical waves in the high dispersive cubic-quintic nonlinear Schrodinger equation
    Hong, WP
    OPTICS COMMUNICATIONS, 2002, 213 (1-3) : 173 - 182
  • [35] Pure-quartic optical solitons and modulational instability analysis with cubic-quintic nonlinearity
    Soltani, Mourad
    Triki, Houria
    Azzouzi, Faisal
    Sun, Yunzhou
    Biswas, Anjan
    Yildirim, Yakup
    Alshehri, Hashim M.
    Zhou, Qin
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [36] Multisymplectic structure-preserving scheme for the coupled Gross-Pitaevskii equations
    Wang, Lan
    Wang, Yushun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (04) : 783 - 806
  • [37] Coupled Gross-Pitaevskii equations with a square-well and a Coulomb potential
    Hioe, FT
    Carroll, CE
    PHYSICS LETTERS A, 2002, 299 (2-3) : 189 - 196
  • [38] Modulational instability of Gross-Pitaevskii-type equations in 1+1 dimensions
    Theocharis, G
    Rapti, Z
    Kevrekidis, PG
    Frantzeskakis, DJ
    Konotop, VV
    PHYSICAL REVIEW A, 2003, 67 (06):
  • [39] Cubic-quintic nonlinear wave patterns and Lagrangian approach to modulational instability in pure-quartic media
    Tchepemen, Nathan
    Balasubramanian, Sudharsan
    Chamgoue, Andre Cheage
    Kengne, Emmanuel
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (12)
  • [40] Cubic-quintic nonlinear wave patterns and Lagrangian approach to modulational instability in pure-quartic media
    Nathan Tchepemen
    Sudharsan Balasubramanian
    André Chéagé Chamgoué
    Emmanuel Kengne
    Optical and Quantum Electronics, 2023, 55