Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities

被引:0
|
作者
Mboumba, Maik Delon [1 ,2 ]
Kamsap, Marius Romuald [1 ]
Moubissi, Alain Brice [1 ]
Ekogo, Thierry Blanchard [1 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Sci & Tech Masuku, Dept Phys, Lab Opt Laser & Applicat, BP 943, Franceville, Gabon
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
关键词
coupled Bose-einstein condensates; modulational instability; soliton; time-dependent variational approach; higher order nonlinearity; 03.75.Lm; 03.75.Kk; MATTER WAVES; SPIN-ORBIT; BOSE; SOLITONS;
D O I
10.1088/1402-4896/ad8f77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the existence of modulational instability ( MI ) in both trapped miscible and immiscible two component Bose-Einstein condensates. The study is addressed theoretically and numerically in the framework of one-dimensional coupled Gross-Pitaevskii equations incorporating intra- and interspecies cubic-quintic nonlinearities with higher-order ones. Using the time-dependent variational approach, we derive the new Euler-Langrange equations for the time evolution of the phase and amplitude of the modulational perturbation as well as the effective potential and the instability criteria of the system. We examine the effects of higher order nonlinearities on the instability dynamics of the condensates. We show that the modulational properties of the chosen wave numbers are significantly modified. Direct numerical simulations run by the split step Fourier method confirm the analytical predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation
    Dai Chao-Qing
    Chen Rui-Pin
    Wang Yue-Yue
    CHINESE PHYSICS B, 2012, 21 (03)
  • [22] Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation
    戴朝卿
    陈瑞品
    王悦悦
    Chinese Physics B, 2012, (03) : 145 - 150
  • [23] The effect of Levy index coefficient on modulational instability and rogue wave excitation in nonlocal media with cubic-quintic nonlinearities
    Tiofack, Camus Gaston Latchio
    Tabi, Conrad Bertrand
    Tagwo, Hippolyte
    Kofane, Timoleon Crepin
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
  • [24] Modulational instability of a modified Gross-Pitaevskii equation with higher-order nonlinearity
    Qi, Xiu-Ying
    Xue, Ju-Kui
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [25] Stability analysis and continuation for the coupled Gross-Pitaevskii equations
    Sriburadet, Sirilak
    Shih, Yin-Tzer
    Chien, C. -S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 807 - 826
  • [26] Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation
    Abdullaev, F. Kh.
    Bouketir, A.
    Messikh, A.
    Umarov, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) : 54 - 61
  • [27] Modulational instability in the cubic-quintic nonlinear Schrodinger equation through the variational approach
    Ndzana, Fabien I. I.
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    OPTICS COMMUNICATIONS, 2007, 275 (02) : 421 - 428
  • [28] Modulational instability in two-component discrete media with cubic-quintic nonlinearity
    Baizakov, B. B.
    Bouketir, A.
    Messikh, A.
    Umarov, B. A.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [29] Domain walls in the coupled Gross-Pitaevskii equations with the harmonic potential
    Contreras, Andres
    Pelinovsky, Dmitry E.
    Slastikov, Valeriy
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [30] An Energy-Preserving Scheme for the Coupled Gross-Pitaevskii Equations
    Wang, Lan
    Cai, Wenjun
    Wang, Yushun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (01) : 203 - 231