Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities

被引:0
|
作者
Mboumba, Maik Delon [1 ,2 ]
Kamsap, Marius Romuald [1 ]
Moubissi, Alain Brice [1 ]
Ekogo, Thierry Blanchard [1 ]
Kofane, Timoleon Crepin [2 ,3 ]
机构
[1] Univ Sci & Tech Masuku, Dept Phys, Lab Opt Laser & Applicat, BP 943, Franceville, Gabon
[2] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, POB 812, Yaounde, Cameroon
[3] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Mail Bag 16, Palapye, Botswana
关键词
coupled Bose-einstein condensates; modulational instability; soliton; time-dependent variational approach; higher order nonlinearity; 03.75.Lm; 03.75.Kk; MATTER WAVES; SPIN-ORBIT; BOSE; SOLITONS;
D O I
10.1088/1402-4896/ad8f77
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the existence of modulational instability ( MI ) in both trapped miscible and immiscible two component Bose-Einstein condensates. The study is addressed theoretically and numerically in the framework of one-dimensional coupled Gross-Pitaevskii equations incorporating intra- and interspecies cubic-quintic nonlinearities with higher-order ones. Using the time-dependent variational approach, we derive the new Euler-Langrange equations for the time evolution of the phase and amplitude of the modulational perturbation as well as the effective potential and the instability criteria of the system. We examine the effects of higher order nonlinearities on the instability dynamics of the condensates. We show that the modulational properties of the chosen wave numbers are significantly modified. Direct numerical simulations run by the split step Fourier method confirm the analytical predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modulational instability and soliton control in a cubic-quintic dissipative Gross-Pitaevskii equation with distributed coefficients*
    Kengne, Emmanuel
    Liu, WuMing
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (21)
  • [2] Domain formation of modulation instability in spin-orbit-Rabi coupled Gross-Pitaevskii equation with cubic-quintic interactions
    Sasireka, Rajmohan
    Sabari, Subramaniyan
    Uthayakumar, Ambikapathy
    Tomio, Lauro
    PHYSICS LETTERS A, 2023, 480
  • [3] Modulational instability in linearly coupled complex cubic-quintic Ginzburg-Landau equations
    Porsezian, K.
    Murali, R.
    Malomed, Boris A.
    Ganapathy, R.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1907 - 1913
  • [4] Stable vortex solitons of (2+1)-dimensional cubic-quintic Gross-Pitaevskii equation with spatially inhomogeneous nonlinearities
    Song, Xiang
    Li, Hua-Mei
    PHYSICS LETTERS A, 2013, 377 (09) : 714 - 717
  • [5] Modulational instability in a coupled nonlocal media with cubic, quintic and septimal nonlinearities
    Tchepemen, Nathan
    Balasubramanian, Sudharsan
    Kanagaraj, Nithyanandan
    Kengne, Emmanuel
    NONLINEAR DYNAMICS, 2023, 111 (21) : 20311 - 20329
  • [6] Modulational instability in a coupled nonlocal media with cubic, quintic and septimal nonlinearities
    Nathan Tchepemen
    Sudharsan Balasubramanian
    Nithyanandan Kanagaraj
    Emmanuel Kengne
    Nonlinear Dynamics, 2023, 111 : 20311 - 20329
  • [7] Solitons in multi-body interactions for a fully modulated cubic-quintic Gross-Pitaevskii equation
    Zakeri, Gholam-Ali
    Yomba, Emmanuel
    APPLIED MATHEMATICAL MODELLING, 2018, 56 : 1 - 14
  • [8] Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains
    Luckins, Ellen K.
    Van Corder, Robert A.
    ANNALS OF PHYSICS, 2018, 388 : 206 - 234
  • [9] STABILITY AND INSTABILITY OF STANDING WAVES FOR GROSS-PITAEVSKII EQUATIONS WITH DOUBLE POWER NONLINEARITIES
    Zhang, Yue
    Zhang, Jian
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, : 533 - 553
  • [10] GLOBAL WELL-POSEDNESS OF THE GROSS-PITAEVSKII AND CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATIONS WITH NON-VANISHING BOUNDARY CONDITIONS
    Killip, Rowan
    Oh, Tadahiro
    Pocovnicu, Oana
    Visan, Monica
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (05) : 969 - 986