MERGE: A Modal Equilibrium Relational Graph Framework for Multi-Modal Knowledge Graph Completion

被引:0
作者
Shang, Yuying [1 ,2 ,3 ,4 ]
Fu, Kun [1 ,2 ,3 ]
Zhang, Zequn [1 ,2 ]
Jin, Li [1 ,2 ]
Liu, Zinan [1 ,3 ,4 ]
Wang, Shensi [1 ,2 ,3 ,4 ]
Li, Shuchao [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-modal knowledge graph; knowledge graph representation; graph attention network; information integration;
D O I
10.3390/s24237605
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The multi-modal knowledge graph completion (MMKGC) task aims to automatically mine the missing factual knowledge from the existing multi-modal knowledge graphs (MMKGs), which is crucial in advancing cross-modal learning and reasoning. However, few methods consider the adverse effects caused by different missing modal information in the model learning process. To address the above challenges, we innovatively propose a Modal Equilibrium Relational Graph framEwork, called MERGE. By constructing three modal-specific directed relational graph attention networks, MERGE can implicitly represent missing modal information for entities by aggregating the modal embeddings from neighboring nodes. Subsequently, a fusion approach based on low-rank tensor decomposition is adopted to align multiple modal features in both the explicit structural level and the implicit semantic level, utilizing the structural information inherent in the original knowledge graphs, which enhances the interpretability of the fused features. Furthermore, we introduce a novel interpolation re-ranking strategy to adjust the importance of modalities during inference while preserving the semantic integrity of each modality. The proposed framework has been validated on four publicly available datasets, and the experimental results have demonstrated the effectiveness and robustness of our method in the MMKGC task.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Hyper-node Relational Graph Attention Network for Multi-modal Knowledge Graph Completion
    Liang, Shuang
    Zhu, Anjie
    Zhang, Jiasheng
    Shao, Jie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (02)
  • [2] MultiJAF: Multi-modal joint entity alignment framework for multi-modal knowledge graph
    Cheng, Bo
    Zhu, Jia
    Guo, Meimei
    NEUROCOMPUTING, 2022, 500 : 581 - 591
  • [3] Enhancing Recommender System with Multi-modal Knowledge Graph
    Sun, Chengjie
    Chen, Weiwei
    Lin, Lei
    Shan, Lili
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 395 - 407
  • [4] Multi-Modal Knowledge Graph Construction and Application: A Survey
    Zhu, Xiangru
    Li, Zhixu
    Wang, Xiaodan
    Jiang, Xueyao
    Sun, Penglei
    Wang, Xuwu
    Xiao, Yanghua
    Yuan, Nicholas Jing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 715 - 735
  • [5] MLSFF: Multi-level structural features fusion for multi-modal knowledge graph completion
    Zhai, Hanming
    Lv, Xiaojun
    Hou, Zhiwen
    Tong, Xin
    Bu, Fanliang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14096 - 14116
  • [6] A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multi-Modal
    Liang, Ke
    Meng, Lingyuan
    Liu, Meng
    Liu, Yue
    Tu, Wenxuan
    Wang, Siwei
    Zhou, Sihang
    Liu, Xinwang
    Sun, Fuchun
    He, Kunlun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9456 - 9478
  • [7] Multi-hop neighbor fusion enhanced hierarchical transformer for multi-modal knowledge graph completion
    Wang, Yunpeng
    Ning, Bo
    Wang, Xin
    Li, Guanyu
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (05):
  • [8] Effectively Filtering Images for Better Multi-modal Knowledge Graph
    Peng, Huang
    Xu, Hao
    Tang, Jiuyang
    Wu, Jibing
    Huang, Hongbin
    WEB AND BIG DATA. APWEB-WAIM 2022 INTERNATIONAL WORKSHOPS, KGMA 2022, SEMIBDMA 2022, DEEPLUDA 2022, 2023, 1784 : 10 - 22
  • [9] Temporal multi-modal knowledge graph generation for link prediction
    Li, Yuandi
    Ji, Hui
    Yu, Fei
    Cheng, Lechao
    Che, Nan
    NEURAL NETWORKS, 2025, 185
  • [10] MMCSD: Multi-Modal Knowledge Graph Completion Based on Super-Resolution and Detailed Description Generation
    Wang, Huansha
    Huang, Ruiyang
    Liu, Qinrang
    Li, Shaomei
    Zhang, Jianpeng
    Computers, Materials and Continua, 2025, 83 (01) : 761 - 783