A 35 nV/√Hz Analog Front-End Circuit with Adjustable Bandwidth and Gain in UMC 40 nm CMOS for Biopotential Signal Acquisition

被引:0
作者
Liu, Lu [1 ]
Wang, Bin [1 ]
Xu, Yiren [1 ]
Lin, Xiaokun [1 ]
Yang, Weitao [1 ]
Ding, Yinglong [1 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Bandgap Semicond Tec, Xian 710071, Peoples R China
关键词
capacitively-coupled chopper instrumentation amplifier; low noise; dc servo loop; ripple reduction loop; bandwidth-gain adjustable; biopotential signal acquisition; INSTRUMENTATION AMPLIFIER; CHOPPER AMPLIFIER; INPUT IMPEDANCE; TOLERANT; AFE;
D O I
10.3390/s24247994
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a 35 nV/root Hz analog front-end (AFE) circuitdesigned in the UMC 40 nm CMOS technology for the acquisition of biopotential signal. The proposed AFE consists of a capacitive-coupled instrumentation amplifier (CCIA) and a combination of a programmable gain amplifier (PGA) and a low-pass filter (LPF). The CCIA includes a DC servo loop (DSL) to eliminate electrode DC offset (EDO) and a ripple rejection loop (RRL) with self-zeroing technology to suppress high-frequency ripples caused by the chopper. The PGA-LPF is realized using switched-capacitor circuits, enabling adjustable gain and bandwidth. Implemented in theUMC 40 nm CMOS process, the AFE achieves an input impedance of 368 M Omega at 50 Hz, a common-mode rejection ratio (CMRR) of 111 dB, an equivalent input noise of 1.04 mu Vrms over the 0.5-1 kHz range, and a maximum elimination of 50 mV electrode DC offset voltage. It occupies an area of only 0.39 x 0.47 mm2 on the chip, with a power consumption of 8.96 mu W.
引用
收藏
页数:18
相关论文
共 25 条
[1]   A Fully-Differential Chopper Capacitively-Coupled Amplifier with High Input Impedance for Closed-Loop Neural Recording [J].
Ansari, Fatemeh ;
Yavari, Mohammad .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (07) :3679-3705
[2]   A 0.5-V power-efficient low-noise CMOS instrumentation amplifier for wireless biosensor [J].
Bai, Wenbin ;
Zhu, Zhangming .
MICROELECTRONICS JOURNAL, 2016, 51 :30-37
[3]   An 80-mVpp Linear-Input Range, 1.6-GΩ Input Impedance, Low-Power Chopper Amplifier for Closed-Loop Neural Recording That Is Tolerant to 650-mVpp Common-Mode Interference [J].
Chandrakumar, Hariprasad ;
Markovic, Dejan .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (11) :2811-2828
[4]  
Fan Q., 2018, P 2018 IEEE SENS NEW, P1
[5]  
Fan Q., 2010, IEEE ISSCC Dig. Tech. Papers, P80
[6]   A 1.8 μW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes [J].
Fan, Qinwen ;
Sebastiano, Fabio ;
Huijsing, Johan H. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (07) :1534-1543
[7]  
Jiang Y., 2020, P 2020 IEEE INT C IN, P47
[8]   Analysis of Output Ripple Shape and Amplitude in Chopper Instrumentation Amplifier [J].
Lin, Tsz Ngai ;
Wang, Bo ;
Bermak, Amine .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (02) :299-303
[9]   3.6 mW Active-Electrode ECG/ETI Sensor System Using Wideband Low-Noise Instrumentation Amplifier and High Impedance Balanced Current Driver [J].
Nguyen, Xuan Tien ;
Ali, Muhammad ;
Lee, Jong-Wook .
SENSORS, 2023, 23 (05)
[10]   AC INSTRUMENTATION AMPLIFIER FOR BIOIMPEDANCE MEASUREMENTS [J].
PALLASARENY, R ;
WEBSTER, JG .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1993, 40 (08) :830-833