Non-Hermitian singularities in scattering spectra of Mie resonators

被引:0
|
作者
Zhang, Fan [1 ,2 ]
Solodovchenko, Nikolay S. [2 ,3 ]
Fan, Hangkai [1 ,2 ]
Limonov, Mikhail F. [2 ,3 ]
Song, Mingzhao [1 ]
Kivshar, Yuri S. [4 ]
Bogdanov, Andrey A. [1 ,2 ]
机构
[1] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Shandong, Peoples R China
[2] ITMO Univ, Sch Phys & Engn, St Petersburg 191002, Russia
[3] Ioffe Inst, St Petersburg 194021, Russia
[4] Australian Natl Univ, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia
来源
SCIENCE ADVANCES | 2025年 / 11卷 / 08期
基金
俄罗斯科学基金会; 澳大利亚研究理事会; 中国国家自然科学基金;
关键词
COUPLED-MODE THEORY; EXCEPTIONAL POINTS; LIGHT-SCATTERING; FANO RESONANCE;
D O I
10.1126/sciadv.adr9183
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-Hermitian systems are known to have unique singularities, notably exceptional points. Mie resonators demonstrate fruitful electromagnetic multipole interference effects in scattering behavior. The research of these non-Hermitian singularities is typically conducted independently with the analysis of scattering interference. Here, we demonstrate fundamental relationships between non-Hermitian singularities and observe their manifestation in the scattering spectra. We reveal that exceptional points always exist in the anapole regime, and diabolic points are associated with superscattering. We confirm our theoretical findings in the microwave experiment by measuring the extinction spectra of subwavelength Mie-resonant ceramic rings. Our study underpins the generic behavior of non-Hermitian singularities in the scattering spectra of subwavelength Mie resonators, uncovering their special applications in non-Hermitian nonlinear optics and topological photonics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Winding around non-Hermitian singularities
    Zhong, Qi
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    El-Ganainy, Ramy
    NATURE COMMUNICATIONS, 2018, 9
  • [2] Winding around non-Hermitian singularities
    Qi Zhong
    Mercedeh Khajavikhan
    Demetrios N. Christodoulides
    Ramy El-Ganainy
    Nature Communications, 9
  • [3] Hermitian scattering behavior for a non-Hermitian scattering center
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [4] Spectral Singularities in Non-Hermitian Cylindrical Geometries
    Moccia, M.
    Castaldi, G.
    Alu, A.
    Galdi, V
    2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 125 - 127
  • [5] Thermodynamic Paradox and Non-Hermitian Topological Singularities
    Silveirinha, Mario G.
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 58 - 58
  • [6] Edge states in coupled non-Hermitian resonators
    Liu, Dongjue
    Hu, Hao
    Zhang, Jingjing
    OPTICS LETTERS, 2023, 48 (11) : 2869 - 2872
  • [7] Non-Hermitian spectra and Anderson localization
    Molinari, Luca G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
  • [8] Non-Hermitian Control of Topological Scattering Singularities Emerging from Bound States in the Continuum
    Sakotic, Zarko
    Stankovic, Predrag
    Bengin, Vesna
    Krasnok, Alex
    Alu, Andrea
    Jankovic, Nikolina
    LASER & PHOTONICS REVIEWS, 2023, 17 (06)
  • [9] Asymmetric scattering by non-Hermitian potentials
    Ruschhaupt, A.
    Dowdall, T.
    Simon, M. A.
    Muga, J. G.
    EPL, 2017, 120 (02)
  • [10] Harnessing Spectral Singularities in Non-Hermitian Cylindrical Structures
    Moccia, Massimo
    Castaldi, Giuseppe
    Alu, Andrea
    Galdi, Vincenzo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) : 1704 - 1716