Modeling and Characterizing an Impedance-Type Micro Flow Sensor With Pulse Excitation

被引:0
作者
Xu, Wei [1 ,2 ]
Xiao, Wenlin [1 ,2 ]
Xiao, Ke [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensors; Impedance; Temperature sensors; Electrodes; Sensitivity; Fluid flow; Mechanical sensors; Micromechanical devices; Temperature measurement; Sensor phenomena and characterization; electrochemical impedance; impedance slope; micro flow sensor; pulse-excited; theoretical model;
D O I
10.1109/LSENS.2024.3490983
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents the modeling and characterization of a pulse-excited micro thermal flow sensor based on electrochemical impedance sensing. The proposed transient model reveals that the sensor output, measured as the impedance slope under pulse excitation, is almost one order of magnitude stronger at the downstream electrodes, as compared to the upstream pair. Consequently, the micro-electromechanical systems (MEMS) flow sensor is designed with an 8-mu m-thick flexible structure and a 1.4 mm distance between the microheater and downstream electrodes. Testing results show that the fabricated impedance-type micro flow sensor achieves a maximum sensitivity of 8.9 (m Omega/s)/(mu m/s) for the 1X PBS flow, while consuming less than 15.8 mW of heating power with a fluid flow up to 750 mu m/s. Furthermore, the proposed theoretical model closely aligns with experimental results, confirming its potential as a valuable tool for optimizing impedance-type flow sensors that utilize pulse heating strategies to detect extremely low fluid flow in the future.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
Baldwin A, 2018, PROC IEEE MICR ELECT, P361, DOI 10.1109/MEMSYS.2018.8346562
[2]   An Electrochemical Impedance-Based Thermal Flow Sensor for Physiological Fluids [J].
Baldwin, Alex ;
Yu, Lawrence ;
Meng, Ellis .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2016, 25 (06) :1015-1024
[3]   A fully printed flexible multidirectional thermal flow sensor [J].
Barmpakos, D. ;
Moschos, A. ;
Syrovy, T. ;
Koutsis, T. ;
Syrova, L. ;
Kaltsas, G. .
FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (03)
[4]   Design and applications of MEMS flow sensors: A review [J].
Ejeian, Fatemeh ;
Azadi, Shohreh ;
Razmjou, Amir ;
Orooji, Yasin ;
Kottapalli, Ajay ;
Warkiani, Majid Ebrahimi ;
Asadnia, Mohsen .
SENSORS AND ACTUATORS A-PHYSICAL, 2019, 295 :483-502
[5]   An Electrochemical Impedance-Based Flexible Flow Sensor With Ultra-Low Limit of Detection [J].
Fang, Zetao ;
Xu, Xuankai ;
Izhar ;
Zhang, Li ;
Yang, Yatao ;
Xu, Wei .
IEEE SENSORS JOURNAL, 2022, 22 (02) :1180-1187
[6]   MICRO THERMAL FLOW SENSOR FOR ION SOLUTION BASED ON THE MONITORING OF SLOPE OF IMPEDANCE CHANGES [J].
Fang, Zetao ;
Xu, Xuankai ;
Zheng, Jiufu ;
Zhang, Li ;
Yang, Yatao ;
Xu, Wei .
2021 34TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2021), 2021, :864-867
[7]   High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection [J].
Ghouila-Houri, Cecile ;
Gallas, Quentin ;
Garnier, Eric ;
Merlen, Alain ;
Viard, Romain ;
Talbi, Abdelkrim ;
Pernod, Philippe .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 266 :232-241
[8]   A Continuous, Impedimetric Parylene Flow Sensor [J].
Hudson, Trevor Q. ;
Meng, Ellis .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2021, 30 (03) :456-470
[9]   A Wearable Human Motion Tracking Device Using Micro Flow Sensor Incorporating a Micro Accelerometer [J].
Liu, Shi Qiang ;
Zhang, Jun Chang ;
Zhu, Rong .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (04) :940-948
[10]   SU-8 micro coriolis mass flow sensor [J].
Monge, Rosa ;
Groenesteijn, Jarno ;
Alveringh, Dennis ;
Wiegerink, R. J. ;
Notters, Joost ;
Fernandez, Luis J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 241 :744-749