Influence of fluorine doping on the electrical and optical properties of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte

被引:0
|
作者
Kalaimathi, S. [1 ]
Babu, K. Suresh [1 ]
Imtiyaz, Aaqib [1 ]
机构
[1] Pondicherry Univ, Ctr Nanosci & Technol, Madanjeet Sch Green Energy Technol, Pondicherry 605014, India
关键词
CONDUCTIVITY; LAGAO3; SUBSTITUTION; DIFFRACTION; LAALO3; RAMAN;
D O I
10.1007/s10854-025-14473-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anion doping offers a promising approach to enhance the ionic conductivity of solid electrolytes at intermediate temperatures, a key factor hindering the widespread commercialization process of solid oxide fuel cells (SOFCs). This study, for the first time, explores the influence of fluorine doping at the concentrations of 0, 5, and 10 mol% in La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) perovskite structure, synthesized using the glycine-nitrate combustion method. X-ray diffraction (XRD) analysis revealed a transition from orthorhombic to monoclinic phase upon increasing the fluorine incorporation, while maintaining the tolerance factor near unity, indicating a minimal structural distortion within the GaO6 octahedra. X-ray photoelectron spectroscopy (XPS) confirmed the successful incorporation of fluorine ions, with an associated enhancement in oxygen vacancy that contributed to improved ionic conductivity. Field-emission scanning electron microscopy (FE-SEM) studies revealed that the 10 mol% fluorine-doped LSGM (LSGMF10) exhibited the largest grain size which facilitated faster oxygen vacancy mobility. The optical measurements indicated a reduced bandgap for LSGMF10 due to the increase in oxygen vacancy concentration. Electrochemical impedance spectroscopy (EIS) demonstrated a remarkable conductivity of 3.8 mS/cm at 600 degrees C for LSGMF10 (0.24 mS/cm for LSGM) that can be attributed to the synergistic effects of minimal lattice distortion, reduced bandgap energy, and improved grain growth induced by fluorine doping. These findings establish fluorine doping as a promising approach for developing high-performance SOFC electrolytes at intermediate temperatures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Ionic Conductivity of Chemically Synthesized La0.9Sr0.1Ga0.8Mg0.2O3-δ Solid Electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    ELECTROCERAMICS VI, 2014, 975 : 81 - 85
  • [2] Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs
    Guo, Weimin
    Liu, Jiang
    Jin, Chao
    Gao, Hongbo
    Zhang, Yaohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 473 (1-2) : 43 - 47
  • [3] Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-α
    Ma, Guilin
    Zhang, Feng
    Zhu, Jianli
    Meng, Guangyao
    CHEMISTRY OF MATERIALS, 2006, 18 (25) : 6006 - 6011
  • [4] Determination of the Crystal Structure of La0.9Sr0.1Ga0.8Mg0.2O3-δ
    Zhang, Jie
    Li, Chenggang
    Chen, Weiguang
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 1076 - 1079
  • [5] Influence of small amounts of gallium oxide addition on ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    CERAMICS INTERNATIONAL, 2018, 44 (01) : 115 - 119
  • [6] Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3-δ for IT-SOFCs
    Chaubey, Nityanand
    Wani, B. N.
    Bharadwaj, S. R.
    Chattopadhyaya, M. C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 112 (01) : 155 - 164
  • [7] Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-α by citrate method
    Zheng, WJ
    Wu, LY
    Peng, DK
    Meng, GY
    JOURNAL OF INORGANIC MATERIALS, 2001, 16 (02) : 358 - 362
  • [8] Influence of A-site deficiencies in the system La0.9Sr0.1Ga0.8Mg0.2O3-δ on structure and electrical conductivity
    Runge, H
    Guth, U
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2004, 8 (04) : 272 - 276
  • [9] Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Powder by a Two-Step Doping Method
    Zhong Haitao
    Ai Desheng
    Tan Wei
    Lin Xuping
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 704 - 707
  • [10] Preparation of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte films deposited by RF magnetic sputtering
    Yang, Jianjun
    Ma, Wenhui
    Yu, Jie
    Chen, Xiuhua
    Xing, Jie
    Li, Rui
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 2550 - 2554