Scalable Fabrication of High-Performance Perovskite Solar Cell Modules by Mediated Vapor Deposition

被引:3
作者
Wang, Yulong [1 ]
Chen, Jiahui [1 ]
Zhang, Yuxi [1 ]
Lv, Pin [1 ]
Pan, Junye [1 ]
Hu, Min [2 ]
Tan, Wen Liang [3 ]
Ku, Zhiliang [4 ]
Cheng, Yi-Bing [4 ]
Simonov, Alexandr N. [5 ]
Lu, Jianfeng [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Wuhan Text Univ, Hubei Prov Engn Res Ctr Intelligent Micronano Med, Sch Elect & Elect Engn, Wuhan 430200, Peoples R China
[3] Australian Nucl Sci & Technol Org ANSTO, Australian Synchrotron, Clayton, Vic 3168, Australia
[4] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[5] Monash Univ, Sch Chem, Melbourne, Vic 3800, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
intermediate phase; operational stability; perovskite solar cells; perovskite solar modules; vapor deposition; EFFICIENCY; BEHAVIOR; GROWTH;
D O I
10.1002/adma.202412021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite solar cells (PSCs) can enable renewable electricity generation at low levelized costs, subject to the invention of an economically feasible technology for their large-scale fabrication, like vapor deposition. This approach is effective for the fabrication of small area (<1 cm(2)) PSCs, but its scale-up to produce high-efficiency larger area modules has been limited by a severe imbalance between the vapor-solid reaction kinetics and the mass-transport of the volatile ammonium salt precursor. In this study, an amidine-based low-dimensional perovskite is introduced as an intermediate of the solid-vapor reaction to help resolve this limitation. This improves reaction pathway produces unique vertically monolithic grains with no detectable horizontal boundaries, which is used to produce 1.0 cm(2) PSCs with an efficiency of 22.1%, as well as 12.5 and 48 cm(2) modules delivering 21.1% and 20.1% efficiency, respectively. The modules retain approximate to 85% of their initial performance after 900 h of continuous operation (ISOS-L-1 protocol) and approximate to 100% after 2800 h of storage in an ambient environment (ISOS-D-1 protocol).
引用
收藏
页数:8
相关论文
共 56 条
  • [1] Vapor phase deposition of perovskite photovoltaics: short track to commercialization?
    Abzieher, Tobias
    Moore, David T.
    Ross, Marcel
    Albrecht, Steve
    Silvia, Jared
    Tan, Hairen
    Jeangros, Quentin
    Ballif, Christophe
    Hoerantner, Maximilian T.
    Kim, Beom-Soo
    Bolink, Henk J.
    Pistor, Paul
    Goldschmidt, Jan Christoph
    Chiang, Yu-Hsien
    Stranks, Samuel D.
    Borchert, Juliane
    Mcgehee, Michael D.
    Morales-Masis, Monica
    Patel, Jay B.
    Bruno, Annalisa
    Paetzold, Ulrich W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1645 - 1663
  • [2] Towards Long-Term Stable Perovskite Solar Cells: Degradation Mechanisms and Stabilization Techniques
    Ahn, Namyoung
    Choi, Mansoo
    [J]. ADVANCED SCIENCE, 2024, 11 (04)
  • [3] Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
    Bu, Tongle
    Li, Jing
    Li, Hengyi
    Tian, Congcong
    Su, Jie
    Tong, Guoqing
    Ono, Luis K.
    Wang, Chao
    Lin, Zhipeng
    Chai, Nianyao
    Zhang, Xiao-Li
    Chang, Jingjing
    Lu, Jianfeng
    Zhong, Jie
    Huang, Wenchao
    Qi, Yabing
    Cheng, Yi-Bing
    Huang, Fuzhi
    [J]. SCIENCE, 2021, 372 (6548) : 1327 - +
  • [4] High Efficiency over 20% of Perovskite Solar Cells by Spray Coating via a Simple Process
    Cai, Hongkun
    Liang, Xiaojuan
    Ye, Xiaofang
    Su, Jian
    Guan, Jiayi
    Yang, Jingtao
    Liu, Yue
    Zhou, Xiaojun
    Han, Rui
    Ni, Jian
    Li, Juan
    Zhang, Jianjun
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 9696 - 9702
  • [5] Multifunctional ytterbium oxide buffer for perovskite solar cells
    Chen, Peng
    Xiao, Yun
    Hu, Juntao
    Li, Shunde
    Luo, Deying
    Su, Rui
    Caprioglio, Pietro
    Kaienburg, Pascal
    Jia, Xiaohan
    Chen, Nan
    Wu, Jingjing
    Sui, Yanping
    Tang, Pengyi
    Yan, Haoming
    Huang, Tianyu
    Yu, Maotao
    Li, Qiuyang
    Zhao, Lichen
    Hou, Cheng-Hung
    You, Yun-Wen
    Shyue, Jing-Jong
    Wang, Dengke
    Li, Xiaojun
    Zhao, Qing
    Gong, Qihuang
    Lu, Zheng-Hong
    Snaith, Henry J.
    Zhu, Rui
    [J]. NATURE, 2024, 625 (7995) : 516 - 522
  • [6] Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells
    Domanski, Konrad
    Alharbi, Essa A.
    Hagfeldt, Anders
    Gratzel, Michael
    Tress, Wolfgang
    [J]. NATURE ENERGY, 2018, 3 (01): : 61 - 67
  • [7] Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells
    Du, Tian
    Ratnasingham, Sinclair R.
    Kosasih, Felix U.
    Macdonald, Thomas J.
    Mohan, Lokeshwari
    Augurio, Adriana
    Ahli, Huda
    Lin, Chieh-Ting
    Xu, Shengda
    Xu, Weidong
    Binions, Russell
    Ducati, Caterina
    Durrant, James R.
    Briscoe, Joe
    McLachlan, Martyn A.
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (33)
  • [8] DTBDT-Based Polymer Hole Transport Materials for Low Voltage Loss CsPbI2Br Perovskite Solar Cells
    Duan, Chen
    Tang, Ailing
    Guo, Qiang
    Zhang, Weilin
    Yang, Lei
    Ding, Yuanjia
    Dai, Zheng
    Zhou, Erjun
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [9] Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains
    Eggers, Helge
    Schackmar, Fabian
    Abzieher, Tobias
    Sun, Qing
    Lemmer, Uli
    Vaynzof, Yana
    Richards, Bryce S.
    Hernandez-Sosa, Gerardo
    Paetzold, Ulrich W.
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (06)
  • [10] Extance A, 2019, NATURE, V570, P429, DOI 10.1038/d41586-019-01985-y