A fault diagnosis method for bearings and gears in rotating machinery based on data fusion and transfer learning

被引:0
|
作者
Zhang, Yi [1 ]
Yan, Xiaoxiang [1 ]
Xiao, Ping [2 ]
Zou, Jialing [1 ]
Hu, Ling [1 ]
机构
[1] Southwest Petr Univ, Sch Mechatron Engn, 8 Xindu Ave, Chengdu 610500, Sichuan, Peoples R China
[2] Kingdream publ Ltd Co, Wuhan Donghu New Technol Dev, Zone 5 Huagong Pk 1, Chengdu, Peoples R China
关键词
data fusion; transfer learning; fault diagnosis; small sample; soft thresholding; IMAGE FUSION; VIBRATION;
D O I
10.1088/1361-6501/ad7f74
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and it is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques. Firstly, in this method, two kinds of fault signals are transformed into Gramian Angular Difference Fields and Recurrence Plot. Next, a U-shaped feature fusion dual discriminator generative adversarial network is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results. The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets, Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A lifting contrastive learning method for rotating machinery fault diagnosis
    Liu, Zhuolin
    Zhang, Yan
    Huang, Qingqing
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 547 - 551
  • [22] Application of an Information Fusion Method to Compound Fault Diagnosis of Rotating Machinery
    Hu, Qin
    Qin, Aisong
    Zhang, Qinghua
    Sun, Guoxi
    Shao, Longqiu
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 3859 - 3864
  • [23] An enhancement deep feature fusion method for rotating machinery fault diagnosis
    Shao, Haidong
    Jiang, Hongkai
    Wang, Fuan
    Zhao, Huiwei
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 200 - 220
  • [24] Deep Ensemble-Based Classifier for Transfer Learning in Rotating Machinery Fault Diagnosis
    Pacheco, Fannia
    Drimus, Alin
    Duggen, Lars
    Cerrada, Mariela
    Cabrera, Diego
    Sanchez, Rene-Vinicio
    IEEE ACCESS, 2022, 10 : 29778 - 29787
  • [25] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [26] Rotating machinery fault diagnosis by deep adversarial transfer learning based on subdomain adaptation
    Shao, Jiajie
    Huang, Zhiwen
    Zhu, Yidan
    Zhu, Jianmin
    Fang, Dianjun
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (08)
  • [27] A Novel Fault Diagnosis method for Rotating Machinery of Imbalanced Data
    Han, Qi
    Wang, Xianghua
    Yang, Rui
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2072 - 2077
  • [28] Fault diagnosis of bearings in rotating machinery based on vibration power signal autocorrelation
    Sadoughi, Alireza
    Tashakkor, Soheil
    Ebrahimi, Mohammad
    Rezaei, Esmaeil
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2352 - +
  • [29] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [30] An autoencoder with adaptive transfer learning for intelligent fault diagnosis of rotating machinery
    Tang, Zhi
    Bo, Lin
    Liu, Xiaofeng
    Wei, Daiping
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (05)