A fault diagnosis method for bearings and gears in rotating machinery based on data fusion and transfer learning

被引:0
|
作者
Zhang, Yi [1 ]
Yan, Xiaoxiang [1 ]
Xiao, Ping [2 ]
Zou, Jialing [1 ]
Hu, Ling [1 ]
机构
[1] Southwest Petr Univ, Sch Mechatron Engn, 8 Xindu Ave, Chengdu 610500, Sichuan, Peoples R China
[2] Kingdream publ Ltd Co, Wuhan Donghu New Technol Dev, Zone 5 Huagong Pk 1, Chengdu, Peoples R China
关键词
data fusion; transfer learning; fault diagnosis; small sample; soft thresholding; IMAGE FUSION; VIBRATION;
D O I
10.1088/1361-6501/ad7f74
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and it is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques. Firstly, in this method, two kinds of fault signals are transformed into Gramian Angular Difference Fields and Recurrence Plot. Next, a U-shaped feature fusion dual discriminator generative adversarial network is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results. The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets, Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis
    Zhang L.
    Hu Y.
    Zhao L.
    Zhang H.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (08): : 966 - 975
  • [2] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [3] An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery
    Tian, Jing
    Azarian, Michael H.
    Pecht, Michael
    Niu, Gang
    Li, Chuan
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 96 - 101
  • [4] Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery
    Zhang, Bo
    Dong, Hai
    Qaid, Hamzah A. A. M.
    Wang, Yong
    ACTUATORS, 2024, 13 (03)
  • [5] Fault diagnosis method of rotating machinery based on MSResNet feature fusion and CAM
    Du, Linhao
    JOURNAL OF VIBROENGINEERING, 2024, 26 (07) : 1600 - 1615
  • [6] A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
    Zhou, Funa
    Hu, Po
    Yang, Shuai
    Wen, Chenglin
    SENSORS, 2018, 18 (10)
  • [7] A fault diagnosis method of bearings based on deep transfer learning
    Huang, Min
    Yin, Jinghan
    Yan, Shumin
    Xue, Pengcheng
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 122
  • [8] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Binsen Peng
    Hong Xia
    Xinzhi Lv
    M. Annor-Nyarko
    Shaomin Zhu
    Yongkuo Liu
    Jiyu Zhang
    Applied Intelligence, 2022, 52 : 3051 - 3065
  • [9] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Peng, Binsen
    Xia, Hong
    Lv, Xinzhi
    Annor-Nyarko, M.
    Zhu, Shaomin
    Liu, Yongkuo
    Zhang, Jiyu
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3051 - 3065
  • [10] Fault diagnosis method of rotating machinery for unlabeled data
    Chen F.
    Yang Z.
    Zhang Z.-C.
    Luo W.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (11): : 2514 - 2522