Compositional effect on pressure-induced polymorphism in high-entropy alloys

被引:0
|
作者
Zhang, Fei [1 ,2 ,3 ]
Lou, Hongbo [1 ,4 ]
Liu, Yuxin [1 ]
Zeng, Zhidan [1 ]
Chen, Xiehang [1 ]
Prakapenka, Vitali [5 ]
Greenberg, Eran [5 ]
Yan, Jinyuan [6 ,7 ]
Xiao, Yuming [8 ]
Chow, Paul [8 ]
Kawaguchi, Saori I. [9 ]
Wen, Jianguo [10 ]
Sheng, Huaping [10 ,11 ,12 ]
Wu, Yuan [2 ]
Lu, Zhaoping [2 ]
Zeng, Qiaoshi [1 ,4 ]
机构
[1] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] Inst Shanghai Adv Res Phys Sci, Shanghai Key Lab Mat Frontiers Res Extreme Environ, Shanghai 201203, Peoples R China
[5] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[7] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[8] Argonne Natl Lab, Xray Sci Div, HPCAT, Lemont, IL 60439 USA
[9] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan
[10] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[11] Wuhan Univ, Ctr Electron Microscopy, Sch Phys & Technol, MOE Key Lab Artificial Microand Nanostruct, Wuhan 430072, Peoples R China
[12] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
STACKING-FAULT ENERGY; SHORT-RANGE ORDER; RAY-EMISSION SPECTROSCOPY; INDUCED PHASE-TRANSITIONS; SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; LATTICE DISTORTION; THERMAL-STABILITY; SPIN TRANSITION; CHEMICAL ORDER;
D O I
10.1016/j.mtchem.2024.102435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, pressure-induced polymorphic phase transitions were discovered in several fragmented high-entropy alloys (HEAs), offering a valuable opportunity to deepen our understanding of these materials. However, the chemical and physical factors that govern these transitions are still unclear. Here, we combined in situ high-pressure synchrotron X-ray diffraction, X-ray emission spectroscopy (XES), and high-resolution transmission electron microscopy (HRTEM) to systematically study the evolution of the atomic and electronic structures in the Cantor alloy and its face-centered-cubic (fcc) subset alloys (CoCrFeMnNi, CoCrFeNi, CoCrMnNi, CoFeMnNi, CoCrNi, CoFeNi, CoMnNi, CrFeNi, and FeMnNi). Surprisingly, diverse behavior was observed among these closely related alloys during compression and decompression, which includes irreversible, reversible fcc to hexagonal close-packed (hcp) phase transitions, or even no detectable phase transitions up to similar to 40 GPa. HRTEM measurements confirmed that the fcc and hcp phases abided by the classic Shoji-Nishiyama orientation relationship during the transitions. XES data indicated that high-pressure suppresses the local magnetic moments in all the studied alloys, suggesting that magnetic states do not significantly influence the polymorphic transitions. By comparing the effects of the atomic size difference, entropy, valence electron concentration, and stacking fault energy across all the compositions studied, only the stacking fault energy shows a strong correlation with the phase transitions, indicating it plays a key role in inducing polymorphism in HEAs.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multicomponent high-entropy Cantor alloys
    Cantor, B.
    PROGRESS IN MATERIALS SCIENCE, 2021, 120
  • [22] Superplasticity of high-entropy alloys: a review
    Motallebi, Reza
    Savaedi, Zeinab
    Mirzadeh, Hamed
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2021, 22 (01)
  • [23] Metastability in high-entropy alloys: A review
    Wei, Shaolou
    He, Feng
    Tasan, Cemal Cem
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) : 2924 - 2937
  • [24] The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys
    Ye, Y. F.
    Liu, X. D.
    Wang, S.
    Liu, C. T.
    Yang, Y.
    INTERMETALLICS, 2016, 78 : 30 - 41
  • [25] High-entropy alloys fabricated via powder metallurgy. A critical review
    Torralba, J. M.
    Alvaredo, P.
    Garcia-Junceda, Andrea
    POWDER METALLURGY, 2019, 62 (02) : 84 - 114
  • [26] From high-entropy alloys to complex concentrated alloys
    Gorsse, Stephane
    Couzinie, Jean-Philippe
    Miracle, Daniel B.
    COMPTES RENDUS PHYSIQUE, 2018, 19 (08) : 721 - 736
  • [27] Applications of High-Pressure Technology for High-Entropy Alloys: A Review
    Dong, Wanqing
    Zhou, Zheng
    Zhang, Mengdi
    Ma, Yimo
    Yu, Pengfei
    Liaw, Peter K.
    Li, Gong
    METALS, 2019, 9 (08)
  • [28] Effect of Mo on Phase Stability and Properties in FeMnNiCo High-Entropy Alloys
    Cichocki, Kamil
    Bala, Piotr
    Koziel, Tomasz
    Cios, Grzegorz
    Schell, Norbert
    Muszka, Krzysztof
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2022, 53 (05): : 1749 - 1760
  • [29] Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys
    Senkov, O. N.
    Senkova, S. V.
    Woodward, C.
    ACTA MATERIALIA, 2014, 68 : 214 - 228
  • [30] Effect of Ti on Microstructure and Mechanical Properties of CoFeNiVTix High-Entropy Alloys
    Feng, Zhengzhong
    Zhang, Cun
    Gu, Chenxi
    Xu, Mingqin
    Yang, Lin
    Wang, Lu
    Yi, Jiaojiao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (24) : 14247 - 14255