Compositional effect on pressure-induced polymorphism in high-entropy alloys

被引:0
|
作者
Zhang, Fei [1 ,2 ,3 ]
Lou, Hongbo [1 ,4 ]
Liu, Yuxin [1 ]
Zeng, Zhidan [1 ]
Chen, Xiehang [1 ]
Prakapenka, Vitali [5 ]
Greenberg, Eran [5 ]
Yan, Jinyuan [6 ,7 ]
Xiao, Yuming [8 ]
Chow, Paul [8 ]
Kawaguchi, Saori I. [9 ]
Wen, Jianguo [10 ]
Sheng, Huaping [10 ,11 ,12 ]
Wu, Yuan [2 ]
Lu, Zhaoping [2 ]
Zeng, Qiaoshi [1 ,4 ]
机构
[1] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] Inst Shanghai Adv Res Phys Sci, Shanghai Key Lab Mat Frontiers Res Extreme Environ, Shanghai 201203, Peoples R China
[5] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[7] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[8] Argonne Natl Lab, Xray Sci Div, HPCAT, Lemont, IL 60439 USA
[9] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan
[10] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[11] Wuhan Univ, Ctr Electron Microscopy, Sch Phys & Technol, MOE Key Lab Artificial Microand Nanostruct, Wuhan 430072, Peoples R China
[12] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
STACKING-FAULT ENERGY; SHORT-RANGE ORDER; RAY-EMISSION SPECTROSCOPY; INDUCED PHASE-TRANSITIONS; SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; LATTICE DISTORTION; THERMAL-STABILITY; SPIN TRANSITION; CHEMICAL ORDER;
D O I
10.1016/j.mtchem.2024.102435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, pressure-induced polymorphic phase transitions were discovered in several fragmented high-entropy alloys (HEAs), offering a valuable opportunity to deepen our understanding of these materials. However, the chemical and physical factors that govern these transitions are still unclear. Here, we combined in situ high-pressure synchrotron X-ray diffraction, X-ray emission spectroscopy (XES), and high-resolution transmission electron microscopy (HRTEM) to systematically study the evolution of the atomic and electronic structures in the Cantor alloy and its face-centered-cubic (fcc) subset alloys (CoCrFeMnNi, CoCrFeNi, CoCrMnNi, CoFeMnNi, CoCrNi, CoFeNi, CoMnNi, CrFeNi, and FeMnNi). Surprisingly, diverse behavior was observed among these closely related alloys during compression and decompression, which includes irreversible, reversible fcc to hexagonal close-packed (hcp) phase transitions, or even no detectable phase transitions up to similar to 40 GPa. HRTEM measurements confirmed that the fcc and hcp phases abided by the classic Shoji-Nishiyama orientation relationship during the transitions. XES data indicated that high-pressure suppresses the local magnetic moments in all the studied alloys, suggesting that magnetic states do not significantly influence the polymorphic transitions. By comparing the effects of the atomic size difference, entropy, valence electron concentration, and stacking fault energy across all the compositions studied, only the stacking fault energy shows a strong correlation with the phase transitions, indicating it plays a key role in inducing polymorphism in HEAs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Compositional variations in equiatomic CrMnFeCoNi high-entropy alloys
    Muniandy, Yokasundery
    He, Mengwei
    Eizadjou, Mehdi
    George, Easo P.
    Kruzic, Jamie J.
    Ringer, Simon P.
    Gludovatz, Bernd
    MATERIALS CHARACTERIZATION, 2021, 180
  • [2] Compositional inhomogeneity and its effect on the hardness of nanostructured refractory high-entropy alloys
    Wang, Chunyang
    Qin, Mingde
    Lei, Tianjiao
    Wan, Liyang
    Shivakumar, Sashank
    Kisslinger, Kim
    Rupert, Timothy J.
    Luo, Jian
    Xin, Huolin L.
    MATERIALS CHARACTERIZATION, 2024, 207
  • [3] High-entropy alloys
    George, Easo P.
    Raabe, Dierk
    Ritchie, Robert O.
    NATURE REVIEWS MATERIALS, 2019, 4 (08) : 515 - 534
  • [4] Science and technology in high-entropy alloys
    Zhang, Weiran
    Liaw, Peter K.
    Zhang, Yong
    SCIENCE CHINA-MATERIALS, 2018, 61 (01) : 2 - 22
  • [5] Polymorphism in a high-entropy alloy
    Zhang, Fei
    Wu, Yuan
    Lou, Hongbo
    Zeng, Zhidan
    Prakapenka, Vitali B.
    Greenberg, Eran
    Ren, Yang
    Yan, Jinyuan
    Okasinski, John S.
    Liu, Xiongjun
    Liu, Yong
    Zeng, Qiaoshi
    Lu, Zhaoping
    NATURE COMMUNICATIONS, 2017, 8
  • [6] Research Progress on Compositional Design in Eutectic High-Entropy Alloys
    Chen, Kaixuan
    Xiong, Zhiping
    RARE METAL MATERIALS AND ENGINEERING, 2024, 53 (07) : 2083 - 2093
  • [7] An overview of high-entropy alloys
    Ibrahim, Pshdar Ahmed
    Ozkul, Iskender
    Canbay, Canan Aksu
    EMERGENT MATERIALS, 2022, 5 (06) : 1779 - 1796
  • [8] Severe Plastic Deformation of High-Entropy Alloys
    Skrotzki, Werner
    Chulist, Robert
    MATERIALS TRANSACTIONS, 2023, 64 (08) : 1769 - 1783
  • [9] From High-Entropy Alloys to High-Entropy Steels
    Raabe, Dierk
    Tasan, Cemal Cem
    Springer, Hauke
    Bausch, Michael
    STEEL RESEARCH INTERNATIONAL, 2015, 86 (10) : 1127 - 1138
  • [10] Advanced high-entropy alloys breaking the property limits of current materials
    Li, Dongyue
    Liaw, Peter K.
    Xie, Lu
    Zhang, Yong
    Wang, Wenrui
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 186 : 219 - 230