共 51 条
- [1] CHANG C H, CREAGER E, GOLDENBERG A, Et al., Explaining Image Classifiers by Counterfactual Generation
- [2] VERMA S, BOONSANONG V, HOANG M, Et al., Counterfactual Explanations for Machine Learning: A Review
- [3] WACHTER S, MITTELSTADT B, RUSSELL C., Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR [ C / OL ]
- [4] GOODFELLOW I J, SHLENS J, SZEGEDY C., Explaining and Harnessing Adversarial Examples
- [5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, Et al., Generative Adversarial Nets, Proc of the 27th International Conference on Neural Information Processing Systems, II, pp. 2672-2680, (2014)
- [6] KINGMA D P, WELLING M., Auto-Encoding Variational Bayes
- [7] HO J, JAIN A, ABBEEL P., Denoising Diffusion Probabilistic Models, Proc of the 34th International Conference on Neural Information Processing Systems, pp. 6840-6851, (2020)
- [8] SONG J M, MENG C L, ERMON S., Denoising Diffusion Implicit Models[ C / OL]
- [9] B魻HLE M, FRITZ M, SCHIELE B., Convolutional Dynamic Alignment Networks for Interpretable Classifications, Proc of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, pp. 10024-10033, (2021)
- [10] B魻HLE M, FRITZ M, SCHIELE B., B-cos Networks: Alignment Is All We Need for Interpretability, Proc of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, pp. 10319-10328, (2022)