Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits

被引:4
|
作者
Yang, Xiaohan [1 ,2 ,3 ,4 ]
Chu, Ji [1 ,2 ,3 ]
Guo, Zechen [1 ,2 ,3 ]
Huang, Wenhui [1 ,2 ,3 ]
Liang, Yongqi [1 ,2 ,3 ]
Liu, Jiawei [1 ,2 ,3 ]
Qiu, Jiawei [1 ,2 ,3 ]
Sun, Xuandong [1 ,2 ,3 ,4 ]
Tao, Ziyu [1 ,2 ,3 ,4 ]
Zhang, Jiawei [1 ,2 ,3 ]
Zhang, Jiajian [1 ,2 ,3 ,4 ]
Zhang, Libo [1 ,2 ,3 ]
Zhou, Yuxuan [1 ,2 ,3 ]
Guo, Weijie [2 ]
Hu, Ling [1 ,2 ,3 ]
Jiang, Ji [1 ,2 ,3 ]
Liu, Yang [2 ]
Linpeng, Xiayu [2 ]
Chen, Tingyong [1 ,2 ,3 ]
Chen, Yuanzhen [1 ,2 ,3 ,4 ]
Niu, Jingjing [2 ,5 ]
Liu, Song [1 ,2 ,3 ,5 ]
Zhong, Youpeng [1 ,2 ,3 ,5 ]
Yu, Dapeng [1 ,2 ,3 ,4 ,5 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Guangdong, Peoples R China
[2] Int Quantum Acad, Shenzhen, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen, Guangdong, Peoples R China
[4] Southern Univ Sci & Technol, Dept Phys, Shenzhen, Guangdong, Peoples R China
[5] Hefei Natl Lab, Shenzhen Branch, Shenzhen 518048, Peoples R China
基金
中国国家自然科学基金;
关键词
LOGIC;
D O I
10.1103/PhysRevLett.133.170601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into noncomputational states, a common issue in practical quantum systems including superconducting propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Protecting entanglement between logical qubits via quantum error correction
    Cai, Weizhou
    Mu, Xianghao
    Wang, Weiting
    Zhou, Jie
    Ma, Yuwei
    Pan, Xiaoxuan
    Hua, Ziyue
    Liu, Xinyu
    Xue, Guangming
    Yu, Haifeng
    Wang, Haiyan
    Song, Yipu
    Zou, Chang-Ling
    Sun, Luyan
    NATURE PHYSICS, 2024, 20 (06) : 1022 - 1026
  • [32] Quantum error correction with dissipatively stabilized squeezed-cat qubits
    Hillmann, Timo
    Quijandria, Fernando
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [33] Circuit-QED-based scalable architectures for quantum information processing with superconducting qubits
    Billangeon, P. -M.
    Tsai, J. S.
    Nakamura, Y.
    PHYSICAL REVIEW B, 2015, 91 (09)
  • [34] HiSEP-Q: A Highly Scalable and Efficient Quantum Control Processor for Superconducting Qubits
    Guo, Xiaorang
    Qin, Kun
    Schulz, Martin
    2023 IEEE 41ST INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD, 2023, : 86 - 93
  • [35] Understanding the effects of leakage in superconducting quantum-error-detection circuits
    Ghosh, Joydip
    Fowler, Austin G.
    Martinis, John M.
    Geller, Michael R.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [36] Scalable Quantum Error Correction for Surface Codes using FPGA
    Liyanage, Namitha
    Wu, Yue
    Deters, Alexander
    Zhong, Lin
    2023 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, FCCM, 2023, : 217 - 217
  • [37] Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
    Corcoles, A. D.
    Magesan, Easwar
    Srinivasan, Srikanth J.
    Cross, Andrew W.
    Steffen, M.
    Gambetta, Jay M.
    Chow, Jerry M.
    NATURE COMMUNICATIONS, 2015, 6
  • [38] Protecting the orbital angular momentum of photonic qubits using quantum error correction
    Zhu, Kuntuo
    Yin, Liuguo
    Wang, Chuan
    Long, Guilu
    EPL, 2020, 132 (05)
  • [39] Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
    A.D. Córcoles
    Easwar Magesan
    Srikanth J. Srinivasan
    Andrew W. Cross
    M. Steffen
    Jay M. Gambetta
    Jerry M. Chow
    Nature Communications, 6
  • [40] Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits
    Qian Xu
    Guo Zheng
    Yu-Xin Wang
    Peter Zoller
    Aashish A. Clerk
    Liang Jiang
    npj Quantum Information, 9