HyperGAN: A Hyperspectral Image Fusion Approach Based on Generative Adversarial Networks

被引:4
作者
Wang, Jing [1 ,2 ,3 ]
Zhu, Xu [1 ,2 ]
Jing, Linhai [4 ]
Tang, Yunwei [2 ,3 ]
Li, Hui [2 ,3 ]
Xiao, Zhengqing [1 ]
Ding, Haifeng [2 ,3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[3] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[4] China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
generative adversarial networks; hyperspectral pansharpening; attention; energy; PAN; MS;
D O I
10.3390/rs16234389
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objective of hyperspectral pansharpening is to fuse low-resolution hyperspectral images (LR-HSI) with corresponding panchromatic (PAN) images to generate high-resolution hyperspectral images (HR-HSI). Despite advancements in hyperspectral (HS) pansharpening using deep learning, the rich spectral details and large data volume of HS images place higher demands on models for effective spectral extraction and processing. In this paper, we present HyperGAN, a hyperspectral image fusion approach based on Generative Adversarial Networks. Unlike previous methods that deepen the network to capture spectral information, HyperGAN widens the structure with a Wide Block for multi-scale learning, effectively capturing global and local details from upsampled HSI and PAN images. While LR-HSI provides rich spectral data, PAN images offer spatial information. We introduce the Efficient Spatial and Channel Attention Module (ESCA) to integrate these features and add an energy-based discriminator to enhance model performance by learning directly from the Ground Truth (GT), improving fused image quality. We validated our method on various scenes, including the Pavia Center, Eastern Tianshan, and Chikusei. Results show that HyperGAN outperforms state-of-the-art methods in visual and quantitative evaluations.
引用
收藏
页数:27
相关论文
共 45 条
[1]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[2]   Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S ;
Garzelli, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2300-2312
[3]  
Aiazzi B, 2007, LECT NOTES COMPUT SC, V4816, P121
[4]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[5]  
[Anonymous], 2003, P 3 EARSEL WORKSH IM
[6]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767
[7]  
Berthelot D, 2017, Arxiv, DOI arXiv:1703.10717
[8]  
CHAVEZ PS, 1989, PHOTOGRAMM ENG REM S, V55, P339
[9]   The PRISMA imaging spectroscopy mission: overview and first performance analysis [J].
Cogliati, S. ;
Sarti, F. ;
Chiarantini, L. ;
Cosi, M. ;
Lorusso, R. ;
Lopinto, E. ;
Miglietta, F. ;
Genesio, L. ;
Guanter, L. ;
Damm, A. ;
Perez-Lopez, S. ;
Scheffler, D. ;
Tagliabue, G. ;
Panigada, C. ;
Rascher, U. ;
Dowling, T. P. F. ;
Giardino, C. ;
Colombo, R. .
REMOTE SENSING OF ENVIRONMENT, 2021, 262
[10]  
Denton E, 2015, ADV NEUR IN, V28