Many-body eigenstates from quantum manifold optimization

被引:0
作者
Smart, Scott E. [1 ]
Narang, Prineha [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Coll Letters & Sci, Div Phys Sci, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
ALGORITHMS; STIEFEL;
D O I
10.1103/PhysRevA.110.052430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum computing offers several new pathways toward finding many-body eigenstates, with variational approaches being some of the most flexible and near-term oriented. These require particular parametrizations of the state and, for solving multiple eigenstates, must incorporate orthogonality. In this work, we use techniques from manifold optimization to arrive at solutions of the many-body eigenstate problem via direct minimization over the Stiefel and Grassmannian manifolds, avoiding parametrizations of the states and allowing for multiple eigenstates to be simultaneously calculated. These Riemannian manifolds naturally encode orthogonality constraints and have efficient quantum representations of the states and tangent vectors. We provide example calculations for quantum many-body molecular systems and discuss different pathways for solving the multiple eigenstate problem.
引用
收藏
页数:15
相关论文
共 58 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]  
[Anonymous], 2008, Universitext
[3]   Quantum variational algorithms are swamped with traps [J].
Anschuetz, Eric R. ;
Kiani, Bobak T. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Quantum simulation of excited states from parallel contracted quantum eigensolvers [J].
Benavides-Riveros, Carlos L. ;
Wang, Yuchen ;
Warren, Samuel ;
Mazziotti, David A. .
NEW JOURNAL OF PHYSICS, 2024, 26 (03)
[5]  
Boumal N., 2023, An introduction to optimization on smooth manifolds
[6]   Cost function dependent barren plateaus in shallow parametrized quantum circuits [J].
Cerezo, M. ;
Sone, Akira ;
Volkoff, Tyler ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Theory of Trotter Error with Commutator Scaling [J].
Childs, Andrew M. ;
Su, Yuan ;
Tran, Minh C. ;
Wiebe, Nathan ;
Zhu, Shuchen .
PHYSICAL REVIEW X, 2021, 11 (01)
[8]   Stiefel and Grassmann manifolds in quantum chemistry [J].
Chiumiento, Eduardo ;
Melgaard, Michael .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (08) :1866-1881
[9]   Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm [J].
Colless, J. I. ;
Ramasesh, V. V. ;
Dahlen, D. ;
Blok, M. S. ;
Kimchi-Schwartz, M. E. ;
McClean, J. R. ;
Carter, J. ;
de Jong, W. A. ;
Siddiqi, I. .
PHYSICAL REVIEW X, 2018, 8 (01)
[10]  
Ding LX, 2024, Arxiv, DOI arXiv:2401.12104