GainNet: Coordinates the Odd Couple of Generative AI and 6G Networks

被引:1
作者
Chen, Ning [1 ]
Yang, Jie [2 ]
Cheng, Zhipeng [3 ]
Fan, Xuwei [1 ]
Liu, Zhang [1 ]
Huang, Bangzhen [1 ]
Zhao, Yifeng [1 ]
Huang, Lianfen [1 ]
Du, Xiaojiang [4 ]
Guizani, Mohsen [5 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen 361102, Peoples R China
[3] Soochow Univ, Sch Future Sci & Engn, Suzhou 215006, Peoples R China
[4] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[5] Mohamed bin Zayed Univ Artificial Intelligence, Machine Learning Dept, Abu Dhabi, U Arab Emirates
来源
IEEE NETWORK | 2024年 / 38卷 / 05期
关键词
6G mobile communication; Computational modeling; Data models; Artificial intelligence; Knowledge engineering; Sensors; Optimization; 6G; generative AI; collaborative cloud-edge-end intelligence; resource orchestration; integrated sensing; communication; computing; ORCHESTRATION;
D O I
10.1109/MNET.2024.3418671
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid expansion of AI-generated content (AIGC) reflects the iteration from assistive AI towards generative AI (GAI). Meanwhile, the 6G networks will also evolve from the Internet-of-Everything to the Internet-of-Intelligence. However, they seem to be an odd couple, due to the contradiction of data and resources. To achieve a better-coordinated interplay between GAI and 6G, the GAI-native Networks (GainNet), a GAI-oriented collaborative cloud-edge-end intelligence framework, is proposed in this article. By deeply integrating GAI with 6G network design, GainNet realizes the positive closed-loop knowledge flow and sustainable-evolution GAI model optimization. On this basis, the GAI-oriented generic Resource Orchestration Mechanism with Integrated Sensing, Communication, and Computing (GaiRomISCC) is proposed to guarantee the efficient operation of GainNet. Two simple case studies demonstrate the effectiveness and robustness of the proposed schemes. Finally, we envision the key challenges and future directions concerning the interplay between GAI models and 6G networks.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [41] Generative AI for Cyber Threat-Hunting in 6G-enabled IoT Networks
    Ferrag, Mohamed Amine
    Debbah, Merouane
    Al-Hawawreh, Muna
    2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING WORKSHOPS, CCGRIDW, 2023, : 16 - 25
  • [42] A User-Centric Perspective of 6G Networks: A Survey
    Drampalou, Stamatia F.
    Uzunidis, Dimitris
    Vetsos, Anastasios
    Miridakis, Nikolaos I.
    Karkazis, Panagiotis
    IEEE ACCESS, 2024, 12 : 190255 - 190294
  • [43] 6G Vision: An AI-Driven Decentralized Network and Service Architecture
    Qiao, Xiuquan
    Huang, Yakun
    Dustdar, Schahram
    Chen, Junliang
    IEEE INTERNET COMPUTING, 2020, 24 (04) : 33 - 40
  • [44] Enabling Mobile AI Agent in 6G Era: Architecture and Key Technologies
    Chen, Ziqi
    Sun, Qi
    Li, Nan
    Li, Xiang
    Wang, Yang
    I, Chih-Lin
    IEEE NETWORK, 2024, 38 (05): : 66 - 75
  • [45] On End-to-End Intelligent Automation of 6G Networks
    Moubayed, Abdallah
    Shami, Abdallah
    Al-Dulaimi, Anwer
    FUTURE INTERNET, 2022, 14 (06):
  • [46] Causal Effects of Adversarial Attacks on AI Models in 6G Consumer Electronics
    Guo, Da
    Feng, Zhengjie
    Zhang, Zhen
    Khan, Fazlullah
    Chen, Chien-Ming
    Bai, Ruibin
    Omar, Marwan
    Kumar, Saru
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5804 - 5813
  • [47] Machine Learning in Beyond 5G/6G Networks-State-of-the-Art and Future Trends
    Rekkas, Vasileios P.
    Sotiroudis, Sotirios
    Sarigiannidis, Panagiotis
    Wan, Shaohua
    Karagiannidis, George K.
    Goudos, Sotirios K.
    ELECTRONICS, 2021, 10 (22)
  • [48] Emerging MIMO Technologies for 6G Networks
    Souto, Victoria Dala Pegorara
    Dester, Plinio Santini
    Facina, Michelle Soares Pereira
    Silva, Daniely Gomes
    de Figueiredo, Felipe Augusto Pereira
    Tejerina, Gustavo Rodrigues de Lima
    Santos Filho, Jose Candido Silveira
    Ferreira, Juliano Silveira
    Mendes, Luciano Leonel
    Souza, Richard Demo
    Cardieri, Paulo
    SENSORS, 2023, 23 (04)
  • [49] Transition technologies towards 6G networks
    Raddo, Thiago R.
    Rommel, Simon
    Cimoli, Bruno
    Vagionas, Chris
    Perez-Galacho, Diego
    Pikasis, Evangelos
    Grivas, Evangelos
    Ntontin, Konstantinos
    Katsikis, Michael
    Kritharidis, Dimitrios
    Ruggeri, Eugenio
    Spaleniak, Izabela
    Dubov, Mykhaylo
    Klonidis, Dimitrios
    Kalfas, George
    Sales, Salvador
    Pleros, Nikos
    Monroy, Idelfonso Tafur
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [50] Toward Robust Control for 6G Networks
    Eugster, Patrick
    IEEE NETWORK, 2024, 38 (03): : 254 - 260