Multiwavelength Raman lidar system for profiling the CCN number concentrations

被引:0
作者
Mao, Jiandong [1 ,2 ]
Bao, Jun [1 ,2 ]
Wang, Qiang [1 ,2 ]
机构
[1] North Minzu Univ, Sch Elect & Informat Engn, North Wenchang Rd, Yinchuan 750021, Peoples R China
[2] Key Lab Atmospher Environm Remote Sensing Ningxia, North Wenchang Rd, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
CLOUD CONDENSATION NUCLEI; HYGROSCOPIC GROWTH; AEROSOL-PARTICLES; SIZE DISTRIBUTION; MT; HUANG; PARAMETERIZATION; RETRIEVAL; PROPERTY;
D O I
10.1364/AO.538248
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cloud condensation nuclei (CCN) play an important role in the research of cloud microphysical and aerosol-cloud interactions. This study employs a multiwavelength Raman lidar for measuring CCN concentration. First, the multiwavelength Raman lidar was used to measure the atmospheric relative humidity profile, and the combination of relative humidity and the aerosol backscattering coefficient was used to retrieve the hygroscopic growth factor. By fitting the hygroscopic growth factor using the /Ckappa parameter model, the hygroscopic parameter /Ckappa that characterizes the hygroscopicity of aerosols was obtained. Then, the critical activation radius of aerosols was derived using the /C-K & ouml;hler theory and hygroscopicity parameter /Ckappa. Finally, the CCN number concentration was obtained by combining with the aerosol particle size distribution. Experiments were conducted to verify the feasibility of the multiwavelength Raman lidar. Results showed that the effective detection range of the lidar is approximately 0-4 km. The error of the temperature measured by the lidar at the height of 0.3-3.8 km is approximately +/- 1 K. When the relative humidity change is 0.77-0.87, the range of the hygroscopic growth factor change is 1.06-1.10, the hygroscopic parameter y is 0.065, and the hygroscopic parameter /Ckappa is 0.009. The CCN numbers concentration decreases with height but increases closer to the cloud. The multiwavelength Raman lidar is an important tool for detection of cloud microphysical and aerosol-cloud interactions and could have scientific importance and research value, both for improved understanding of the formation of clouds and precipitation and for enhanced accuracy of weather modification. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:8108 / 8123
页数:16
相关论文
共 38 条
[1]  
[Anonymous], About us
[2]   Retrieval of particle size distribution based on a multi-objective genetic algorithm for multi-wavelength lidar [J].
Bao, Jun ;
Qi, Liangliang ;
Mao, Jiandong ;
Gong, Xin .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
[3]   Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator [J].
Behrendt, A ;
Reichardt, J .
APPLIED OPTICS, 2000, 39 (09) :1372-1378
[4]  
Bohren C.F., 2010, Absorption and Scattering of Light by Small Particles, DOI DOI 10.1002/9783527618156
[5]   Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem [J].
Chemyakin, Eduard ;
Burton, Sharon ;
Kolgotin, Alexei ;
Muller, Detlef ;
Hostetler, Chris ;
Ferrare, Richard .
APPLIED OPTICS, 2016, 55 (09) :2188-2202
[6]   On the competition among aerosol number, size and composition in predicting CCN variability: a multi-annual field study in an urbanized desert [J].
Crosbie, E. ;
Youn, J-S ;
Balch, B. ;
Wonaschuetz, A. ;
Shingler, T. ;
Wang, Z. ;
Conant, W. C. ;
Betterton, E. A. ;
Sorooshian, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (12) :6943-6958
[7]   A 19-Month Record of Marine Aerosol- Cloud-Radiation Properties Derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered MBL Cloud Properties [J].
Dong, Xiquan ;
Xi, Baike ;
Kennedy, Aaron ;
Minnis, Patrick ;
Wood, Robert .
JOURNAL OF CLIMATE, 2014, 27 (10) :3665-3682
[8]   A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties [J].
Donovan, D. P. ;
Baltink, H. Klein ;
Henzing, J. S. ;
de Roode, S. R. ;
Siebesma, A. P. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (01) :237-266
[9]   Size matters more than chemistry for cloud-nucleating ability of aerosol particles [J].
Dusek, U. ;
Frank, G. P. ;
Hildebrandt, L. ;
Curtius, J. ;
Schneider, J. ;
Walter, S. ;
Chand, D. ;
Drewnick, F. ;
Hings, S. ;
Jung, D. ;
Borrmann, S. ;
Andreae, M. O. .
SCIENCE, 2006, 312 (5778) :1375-1378
[10]   Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation [J].
Esteban Bedoya-Velasquez, Andres ;
Navas-Guzman, Francisco ;
Jose Granados-Munoz, Maria ;
Titos, Gloria ;
Roman, Roberto ;
Andres Casquero-Vera, Juan ;
Ortiz-Amezcua, Pablo ;
Antonio Benavent-Oltra, Jose ;
de Arruda Moreira, Gregori ;
Montilla-Rosero, Elena ;
David Hoyos, Carlos ;
Artinano, Begona ;
Coz, Esther ;
Jose Olmo-Reyes, Francisco ;
Alados-Arboledas, Lucas ;
Luis Guerrero-Rascado, Juan .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (10) :7001-7017