Influence of Copper Addition on Microstructure, Mechanical and Thermal Properties of Al-Zn-Mg Alloys

被引:0
作者
Patel N. [1 ]
Pradhan A.K. [1 ]
机构
[1] Department of Metallurgical and Materials Engineering, MNIT Jaipur, JLN Marg, Malviya Nagar, Rajasthan, Jaipur
关键词
Al-Zn-Mg alloys; copper additions; mechanical properties; microstructure; precipitation; scanning electron microscopy; x-ray diffraction;
D O I
10.1007/s40962-023-01214-3
中图分类号
学科分类号
摘要
In this research paper, the effect of the addition of copper (0.02 to 3.32 wt.%) on microstructure, mechanical and thermal properties of Al-Zn-Mg alloy are studied using an optical microscope, scanning electron microscope (SEM), X-ray diffractometer (XRD), Vicker’s microhardness tester, universal testing machine (UTM) and differential scanning calorimeter (DSC). Precipitates (η-MgZn2 phases) are present in as-cast Al-Zn-Mg alloy. SEM and XRD analyses have shown the presence of η (MgZn2) and θ (Al2Cu) precipitate in the as-cast Al-Zn-Mg-Cu alloy. Micro-Vickers hardness increases from 121.3 HV1 to 153.1 HV1 for the initial increase in copper content (0.02 to 1.54 wt.%) and then decreases to 137.3 HV1 (3.32 wt.% copper). The melting point decreases continuously with increased copper content from 619.8 °C (0.02 wt.% Cu) to 608.5 °C (3.32 wt.% Cu). Peak compressive stress, absorbed energy per unit volume, yield stress is observed to increase by 43.6%, 75.4%, and 59.3%, respectively, for the rise in copper content (0.02 wt.% to 1.54 wt.%) in the alloy. © American Foundry Society 2023.
引用
收藏
页码:2924 / 2932
页数:8
相关论文
共 26 条
[1]  
Liu L., Jia Y.-Y., Jiang J.-T., Zhang B., Li G.-A., Shao W.-Z., Zhen L., The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys, J. Alloys Compd, 799, pp. 1-14, (2019)
[2]  
Starke E.A., Staley J.T., Application of modern aluminum alloys to aircraft, Prog. Aerosp. Sci, 32, pp. 131-172, (1996)
[3]  
Odusote J.K., Ajayi P.A., Mechanical properties and microstructure of recycled aluminum cast with zinc and copper additions, Int. J. Met, 10, pp. 483-490, (2016)
[4]  
Wang S.-S., Huang I.-W., Yang L., Jiang J.-T., Chen J.-F., Dai S.-L., Seidman D.N., Frankel G.S., Zhen L., Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys, J. Electrochem. Soc, 162, pp. C150-C160, (2015)
[5]  
Chen Y., Liu Z., Liu S., Guo H., Liu J., Sheng X., Effect of Cu on the hot tearing susceptibility of Al–6Zn–2.5Mg–xCu alloy, Int. J. Met, 15, pp. 130-140, (2021)
[6]  
Li H., Cao F., Guo S., Jia Y., Zhang D., Liu Z., Wang P., Scudino S., Sun J., Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys, J. Alloys Compd, 719, pp. 89-96, (2017)
[7]  
Ibrahim M.F., Samuel A.M., Samuel F.H., A preliminary study on optimizing the heat treatment of high strength Al–Cu–Mg–Zn alloys, Mater. Des, 57, pp. 342-350, (2014)
[8]  
Zhang B., Liaw P.K., Brechtl J., Ren J., Guo X., Zhang Y., Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy, J. Alloys Compd, 820, (2020)
[9]  
Li X.-M., Starink M.J., Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys, Mater. Sci. Technol, 17, pp. 1324-1328, (2001)
[10]  
Liao Y., Han X., Zeng M., Jin M., Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy, Mater. Des, 66, pp. 581-586, (2015)