Inversion strategies for Q estimation in viscoacoustic full-waveform inversion

被引:0
作者
Yong, Peng [1 ,2 ]
Brossier, Romain [1 ]
Metivier, Ludovic [1 ,3 ]
机构
[1] Univ Grenoble Alpes, ISTerre, Grenoble, France
[2] Chinese Acad Sci, Inst Acoust, Beijing, Peoples R China
[3] Univ Grenoble Alpes, CNRS, LJK, Grenoble, France
关键词
GAUSS-NEWTON; ATTENUATION; TOMOGRAPHY; MEDIA; GRADIENT; DENSITY;
D O I
10.1190/GEO2023-0760.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimation of an attenuation parameter, represented by the quality factor Q , holds paramount importance in seismic exploration. One of the main challenges in Q estimation through viscoacoustic full-waveform inversion (FWI) is effectively decoupling Q from velocity. In this study, our objective is to enhance Q inversion by addressing critical aspects, such as gradient preconditioning, workflow, and misfit design. By developing a new preconditioner that approximates the diagonal of the Hessian, we facilitate automatic parameter tuning across different classes, ensuring comparable magnitudes of preconditioned gradients for velocity and Q . Moreover, our investigations confirm the efficacy of the two-stage hierarchical strategy in mitigating velocity-Q Q trade-offs, enabling more accurate Q estimation by first focusing on velocity reconstruction before jointly estimating velocity and Q . The analysis and numerical examples also highlight the importance of broadband data and long-offset acquisition for a reliable Q estimation. In addition, leveraging amplitude information can improve Q estimation to some extent, but careful consideration of frequency band and noise effects is necessary. We explore two misfit functions that capture amplitude variation with frequency in the time-frequency domain, noting their sensitivity to noise. To address this, we develop a differential strategy that can effectively mitigate the effects of low-frequency noise. This comprehensive study on enhancing Q estimation in viscoacoustic FWI offers valuable insights for multiparameter inversion in realistic scenarios.
引用
收藏
页码:R399 / R413
页数:15
相关论文
共 50 条
  • [21] 3D anisotropic full-waveform inversion for complex salt provinces
    Li, Junxiao
    Rusmanugroho, Herurisa
    Kalita, Mahesh
    Xin, Kefeng
    Dzulkefli, Farah Syazana
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [22] Full-waveform inversion of Crosshole GPR data: Implications for porosity estimation in chalk
    Keskinen, Johanna
    Klotzsche, Anja
    Looms, Majken C.
    Moreau, Julien
    van der Kruk, Jan
    Holliger, Klaus
    Stemmerik, Lars
    Nielsen, Lars
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 140 : 102 - 116
  • [23] Correlation-based reflection full-waveform inversion
    Chi, Benxin
    Dong, Liangguo
    Liu, Yuzhu
    GEOPHYSICS, 2015, 80 (04) : R189 - R202
  • [24] Adaptive structure-based full-waveform inversion
    Luo, Laiqian
    Rao, Ying
    Zhao, Zhencong
    Zhang, Junqiu
    GEOPHYSICS, 2024, 89 (03) : R303 - R313
  • [25] Flux-corrected transport for full-waveform inversion
    Kalita, Mahesh
    Alkhalifah, Tariq
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (03) : 2147 - 2164
  • [26] On the influence of different misfit functions for attenuation estimation in viscoelastic full-waveform inversion: synthetic study
    Pan, Wenyong
    Wang, Yanfei
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 221 (02) : 1292 - 1319
  • [27] Petrophysical parameter estimation using Biot-poroelastic full-waveform inversion
    Wang, Haiwei
    Liu, Yike
    Liu, Linong
    Yan, Tianfan
    Zhang, Zhendong
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (03) : 1639 - 1654
  • [28] Full-waveform modeling and inversion of physical model data
    Cai, Jian
    Zhang, Jie
    JOURNAL OF APPLIED GEOPHYSICS, 2016, 131 : 145 - 153
  • [29] Simultaneous multifrequency inversion of full-waveform seismic data
    Hu, Wenyi
    Abubakar, Aria
    Habashy, Tarek M.
    GEOPHYSICS, 2009, 74 (02) : R1 - R14
  • [30] Objective function behavior in acoustic full-waveform inversion
    Dong Liang-Guo
    Chi Ben-Xin
    Tao Ji-Xia
    Liu Yu-Zhu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (10): : 3445 - 3460